Classifying primitive solvable permutation groups of rank 5 and 6

Pub Date : 2024-04-29 DOI:10.1515/jgth-2023-0205
Anakin Dey, Kolton O’Neal, Duc Van Khanh Tran, Camron Upshur, Yong Yang
{"title":"Classifying primitive solvable permutation groups of rank 5 and 6","authors":"Anakin Dey, Kolton O’Neal, Duc Van Khanh Tran, Camron Upshur, Yong Yang","doi":"10.1515/jgth-2023-0205","DOIUrl":null,"url":null,"abstract":"Let 𝐺 be a finite solvable permutation group acting faithfully and primitively on a finite set Ω. Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>G</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0205_ineq_0001.png\"/> <jats:tex-math>G_{0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the stabilizer of a point 𝛼 in Ω. The rank of 𝐺 is defined as the number of orbits of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>G</m:mi> <m:mn>0</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0205_ineq_0001.png\"/> <jats:tex-math>G_{0}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in Ω, including the trivial orbit <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0205_ineq_0003.png\"/> <jats:tex-math>\\{\\alpha\\}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we completely classify the cases where 𝐺 has rank 5 and 6, continuing the previous works on classifying groups of rank 4 or lower.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝐺 be a finite solvable permutation group acting faithfully and primitively on a finite set Ω. Let G 0 G_{0} be the stabilizer of a point 𝛼 in Ω. The rank of 𝐺 is defined as the number of orbits of G 0 G_{0} in Ω, including the trivial orbit { α } \{\alpha\} . In this paper, we completely classify the cases where 𝐺 has rank 5 and 6, continuing the previous works on classifying groups of rank 4 or lower.
分享
查看原文
秩为 5 和 6 的原始可解置换群的分类
设𝐺是一个有限可解的置换群,它忠实而原始地作用于有限集 Ω。让 G 0 G_{0} 是 Ω 中点 𝛼 的稳定器。𝐺 的秩定义为 G 0 G_{0} 在 Ω 中的轨道数,包括微轨道 { α } 。 \。在本文中,我们对 𝐺 的秩为 5 和 6 的情况进行了完全分类,延续了之前对秩为 4 或更低的群进行分类的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信