Tuple regularity and 𝑘-ultrahomogeneity for finite groups

Pub Date : 2024-04-29 DOI:10.1515/jgth-2023-0106
Sofia Brenner
{"title":"Tuple regularity and 𝑘-ultrahomogeneity for finite groups","authors":"Sofia Brenner","doi":"10.1515/jgth-2023-0106","DOIUrl":null,"url":null,"abstract":"For <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:mrow> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0106_ineq_0001.png\"/> <jats:tex-math>k,\\ell\\in\\mathbb{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we introduce the concepts of 𝑘-ultrahomogeneity and ℓ-tuple regularity for finite groups. Inspired by analogous concepts in graph theory, these form a natural generalization of homogeneity, which was studied by Cherlin and Felgner as well as Li, and automorphism transitivity, which was investigated by Zhang. Additionally, these groups have an interesting algorithmic interpretation. We classify the 𝑘-ultrahomogeneous and ℓ-tuple regular finite groups for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:mrow> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jgth-2023-0106_ineq_0002.png\"/> <jats:tex-math>k,\\ell\\geq 2</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, we show that every 2-tuple regular finite group is ultrahomogeneous.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For k , N k,\ell\in\mathbb{N} , we introduce the concepts of 𝑘-ultrahomogeneity and ℓ-tuple regularity for finite groups. Inspired by analogous concepts in graph theory, these form a natural generalization of homogeneity, which was studied by Cherlin and Felgner as well as Li, and automorphism transitivity, which was investigated by Zhang. Additionally, these groups have an interesting algorithmic interpretation. We classify the 𝑘-ultrahomogeneous and ℓ-tuple regular finite groups for k , 2 k,\ell\geq 2 . In particular, we show that every 2-tuple regular finite group is ultrahomogeneous.
分享
查看原文
有限群的元组正则性和𝑘-超均质性
对于 k , ℓ ∈ N k,ell\in\mathbb{N},我们引入了有限群的𝑘-超同质性和ℓ-元组正则性的概念。这些概念受到图论中类似概念的启发,是对 Cherlin 和 Felgner 以及 Li 所研究的同质性和 Zhang 所研究的自动反常性的自然概括。此外,这些群还具有有趣的算法解释。我们对 k , ℓ ≥ 2 k,ell\geq 2 的 𝑘-ultrahomogeneous 和 ℓ-tuple 正则有限群进行了分类。特别是,我们证明了每个 2 元组正则有限群都是超均质的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信