Zeeshan Asghar, Rehman Ali Shah, Muhammad Waqas, Muhammad Asif Gondal
{"title":"Electro-fluid-dynamics (EFD) of soft-bodied organisms swimming through mucus having dilatant, viscous, and pseudo-plastic properties","authors":"Zeeshan Asghar, Rehman Ali Shah, Muhammad Waqas, Muhammad Asif Gondal","doi":"10.1142/s0217979225500110","DOIUrl":null,"url":null,"abstract":"<p>The sperm propelling mechanism has been proposed as a possible resource for soft micro-robots in confined spaces, with potential applications in biomedical engineering. Human sperm cells essentially swim through the non-Newtonian liquid (cervical mucus) to reach their target. Thus, sperm cells swimming through non-Newtonian fluids is not vital only for physiology, but also for the fabrication of swimming micro-robots. Inspired by these remarkable applications, we examine the basic mechanics of spermatozoa motility using an undulating sheet model. This undulating sheet is bounded between two rigid walls which is self-propeling in the negative axial direction. The liquid around the spermatozoa is taken as Carreau fluid with electro-osmotic properties. The application of the lubrication approximation results in the reduction of momentum equations. The resulting ODE is solved numerically via the finite difference method and MATLAB’s built-in routine bvp5c. The unknowns that are present in the boundary conditions are refined by the root-finding algorithm. Power losses, cell speed, flow rate, velocity of the fluid, and streamline pattern are visualized by graphs. The findings of this study have important implications for the designing and optimization of electrically controlled microswimmers.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500110","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The sperm propelling mechanism has been proposed as a possible resource for soft micro-robots in confined spaces, with potential applications in biomedical engineering. Human sperm cells essentially swim through the non-Newtonian liquid (cervical mucus) to reach their target. Thus, sperm cells swimming through non-Newtonian fluids is not vital only for physiology, but also for the fabrication of swimming micro-robots. Inspired by these remarkable applications, we examine the basic mechanics of spermatozoa motility using an undulating sheet model. This undulating sheet is bounded between two rigid walls which is self-propeling in the negative axial direction. The liquid around the spermatozoa is taken as Carreau fluid with electro-osmotic properties. The application of the lubrication approximation results in the reduction of momentum equations. The resulting ODE is solved numerically via the finite difference method and MATLAB’s built-in routine bvp5c. The unknowns that are present in the boundary conditions are refined by the root-finding algorithm. Power losses, cell speed, flow rate, velocity of the fluid, and streamline pattern are visualized by graphs. The findings of this study have important implications for the designing and optimization of electrically controlled microswimmers.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.