Yang Wang, Yu Liu, Chongchen Ma, Cen Liu, Qikai Tang, Zhangjie Wang, Jiacheng Lu, Zhengxin Chen, Huibo Wang
{"title":"Deubiquitinase PSMD14 promotes tumorigenicity of glioblastoma by deubiquitinating and stabilizing β-catenin","authors":"Yang Wang, Yu Liu, Chongchen Ma, Cen Liu, Qikai Tang, Zhangjie Wang, Jiacheng Lu, Zhengxin Chen, Huibo Wang","doi":"10.1002/biof.2061","DOIUrl":null,"url":null,"abstract":"<p>The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14), a member of the JAB1/MPN/Mov34 metalloenzyme (JAMM) family, has been shown to function as an oncogene in various human cancers. However, the function of PSMD14 in glioma and the underlying mechanism remain unclear. In this study, our findings reveal a dramatic upregulation of PSMD14 in GBMs, which is associated with poor survival outcomes. Knocking down PSMD14 is associated with decreased proliferation and invasion of GBM cells in vitro and inhibited tumor growth in a xenograft mouse model. Mechanistically, PSMD14 directly interacts with β-catenin, leading to a decrease in the K48-linked ubiquitination of β-catenin and subsequent β-catenin stabilization. Increased β-catenin expression significantly reverses the inhibitory effects of PSMD14 knockdown on the migration, invasion, and tumor growth of GBM cells. Moreover, we observed a significant correlation between PSMD14 and β-catenin expression in human GBM samples. In summary, our results reveal that PSMD14 is a crucial deubiquitinase that is responsible for stabilizing the β-catenin protein, highlighting its potential for use as a therapeutic target for GBM.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":"50 6","pages":"1134-1147"},"PeriodicalIF":5.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14), a member of the JAB1/MPN/Mov34 metalloenzyme (JAMM) family, has been shown to function as an oncogene in various human cancers. However, the function of PSMD14 in glioma and the underlying mechanism remain unclear. In this study, our findings reveal a dramatic upregulation of PSMD14 in GBMs, which is associated with poor survival outcomes. Knocking down PSMD14 is associated with decreased proliferation and invasion of GBM cells in vitro and inhibited tumor growth in a xenograft mouse model. Mechanistically, PSMD14 directly interacts with β-catenin, leading to a decrease in the K48-linked ubiquitination of β-catenin and subsequent β-catenin stabilization. Increased β-catenin expression significantly reverses the inhibitory effects of PSMD14 knockdown on the migration, invasion, and tumor growth of GBM cells. Moreover, we observed a significant correlation between PSMD14 and β-catenin expression in human GBM samples. In summary, our results reveal that PSMD14 is a crucial deubiquitinase that is responsible for stabilizing the β-catenin protein, highlighting its potential for use as a therapeutic target for GBM.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.