Gerardo Pérez, Noé Zapata-Cornejo, Pablo Bustos, Pedro Núñez
{"title":"Social Elastic Band with Prediction and Anticipation: Enhancing Real-Time Path Trajectory Optimization for Socially Aware Robot Navigation","authors":"Gerardo Pérez, Noé Zapata-Cornejo, Pablo Bustos, Pedro Núñez","doi":"10.1007/s12369-024-01135-z","DOIUrl":null,"url":null,"abstract":"<p>As social robots are projected to become an integral part of human life in the coming decades, their ability to adapt movement and trajectory when in proximity to people is essential for ensuring social acceptance during human-robot interaction. A key aspect of this adaptability involves predicting and anticipating human intents during robot navigation. Despite significant strides in the social navigation of autonomous robots within human environments, opportunities for advancements in related algorithms persist. This paper presents a novel real-time path trajectory optimization algorithm for socially aware robot navigation, grounded in the social elastic band concept, incorporating prediction and anticipation of human movements to adapt its forward velocity. Building upon the elastic band framework introduced in the 1990s for adapting robot trajectories in dynamic environments, our proposal of social elastic band differentiates between objects and human presence. This distinction allows for the definition of social interaction spaces and their relationship to the elastic band, facilitating the generation of socially accepted paths that rapidly adapt to environmental changes without causing a disturbance. Integrated into the SNAPE social navigation framework, the algorithm has been tested and validated through simulations and real-world experiments in various environments.</p>","PeriodicalId":14361,"journal":{"name":"International Journal of Social Robotics","volume":"30 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12369-024-01135-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
As social robots are projected to become an integral part of human life in the coming decades, their ability to adapt movement and trajectory when in proximity to people is essential for ensuring social acceptance during human-robot interaction. A key aspect of this adaptability involves predicting and anticipating human intents during robot navigation. Despite significant strides in the social navigation of autonomous robots within human environments, opportunities for advancements in related algorithms persist. This paper presents a novel real-time path trajectory optimization algorithm for socially aware robot navigation, grounded in the social elastic band concept, incorporating prediction and anticipation of human movements to adapt its forward velocity. Building upon the elastic band framework introduced in the 1990s for adapting robot trajectories in dynamic environments, our proposal of social elastic band differentiates between objects and human presence. This distinction allows for the definition of social interaction spaces and their relationship to the elastic band, facilitating the generation of socially accepted paths that rapidly adapt to environmental changes without causing a disturbance. Integrated into the SNAPE social navigation framework, the algorithm has been tested and validated through simulations and real-world experiments in various environments.
期刊介绍:
Social Robotics is the study of robots that are able to interact and communicate among themselves, with humans, and with the environment, within the social and cultural structure attached to its role. The journal covers a broad spectrum of topics related to the latest technologies, new research results and developments in the area of social robotics on all levels, from developments in core enabling technologies to system integration, aesthetic design, applications and social implications. It provides a platform for like-minded researchers to present their findings and latest developments in social robotics, covering relevant advances in engineering, computing, arts and social sciences.
The journal publishes original, peer reviewed articles and contributions on innovative ideas and concepts, new discoveries and improvements, as well as novel applications, by leading researchers and developers regarding the latest fundamental advances in the core technologies that form the backbone of social robotics, distinguished developmental projects in the area, as well as seminal works in aesthetic design, ethics and philosophy, studies on social impact and influence, pertaining to social robotics.