Toward an Operational Machine-Learning-Based Model for Deriving the Real-Time Gapless Diurnal Cycle of Ozone Pollution in China with CLDAS Data

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Nanxuan Shang, Ke Gui*, Fugang Li, Baoxin Li, Xutao Zhang, Zhaoliang Zeng, Yu Zheng, Lei Li, Ye Fei, Yue Peng, Hengheng Zhao, Wenrui Yao, Yurun Liu, Hong Wang, Zhili Wang, Yaqiang Wang, Huizheng Che* and Xiaoye Zhang, 
{"title":"Toward an Operational Machine-Learning-Based Model for Deriving the Real-Time Gapless Diurnal Cycle of Ozone Pollution in China with CLDAS Data","authors":"Nanxuan Shang,&nbsp;Ke Gui*,&nbsp;Fugang Li,&nbsp;Baoxin Li,&nbsp;Xutao Zhang,&nbsp;Zhaoliang Zeng,&nbsp;Yu Zheng,&nbsp;Lei Li,&nbsp;Ye Fei,&nbsp;Yue Peng,&nbsp;Hengheng Zhao,&nbsp;Wenrui Yao,&nbsp;Yurun Liu,&nbsp;Hong Wang,&nbsp;Zhili Wang,&nbsp;Yaqiang Wang,&nbsp;Huizheng Che* and Xiaoye Zhang,&nbsp;","doi":"10.1021/acs.estlett.4c00106","DOIUrl":null,"url":null,"abstract":"<p >An operational real-time surface ozone (O<sub>3</sub>) retrieval (RT-SOR) model was developed that can provide a gapless diurnal cycle of O<sub>3</sub> retrievals with a spatial resolution of 6.25 km by integrating Chinese Land Data Assimilation System (CLDAS) data and multisource auxiliary information. The model robustly captures the hourly O<sub>3</sub> variability, with a sample-based (station-based) cross-validation <i>R</i><sup>2</sup> of 0.88 (0.85) and RMSE of 14.3 μg/m<sup>3</sup> (16.1 μg/m<sup>3</sup>). An additional hindcast-validation experiment demonstrated that the generalization ability of the model is robust (<i>R</i><sup>2</sup> = 0.75; RMSE = 21.9 μg/m<sup>3</sup>). Compared with previous studies, the model performs comparably or even better at the daily scale and fills the gaps in terms of missing hourly O<sub>3</sub> data within the 24-hour cycle. More importantly, underpinned by the RT availability of CLDAS data, the hourly concentration of O<sub>3</sub> can be updated in RT, which is expected to advance our understanding of the diurnal cycle of O<sub>3</sub> pollution in China.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 6","pages":"553–559"},"PeriodicalIF":8.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00106","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

An operational real-time surface ozone (O3) retrieval (RT-SOR) model was developed that can provide a gapless diurnal cycle of O3 retrievals with a spatial resolution of 6.25 km by integrating Chinese Land Data Assimilation System (CLDAS) data and multisource auxiliary information. The model robustly captures the hourly O3 variability, with a sample-based (station-based) cross-validation R2 of 0.88 (0.85) and RMSE of 14.3 μg/m3 (16.1 μg/m3). An additional hindcast-validation experiment demonstrated that the generalization ability of the model is robust (R2 = 0.75; RMSE = 21.9 μg/m3). Compared with previous studies, the model performs comparably or even better at the daily scale and fills the gaps in terms of missing hourly O3 data within the 24-hour cycle. More importantly, underpinned by the RT availability of CLDAS data, the hourly concentration of O3 can be updated in RT, which is expected to advance our understanding of the diurnal cycle of O3 pollution in China.

Abstract Image

Abstract Image

利用 CLDAS 数据建立基于机器学习的中国臭氧污染实时无间隙昼夜循环运行模型
通过整合中国陆地数据同化系统(CLDAS)数据和多源辅助信息,开发了一种可运行的实时地表臭氧(O3)检索(RT-SOR)模式,可提供空间分辨率为 6.25 km 的无间隙昼夜循环 O3 检索。该模式能够稳健地捕捉每小时的臭氧变化,基于样本(基于站点)的交叉验证 R2 为 0.88(0.85),RMSE 为 14.3 μg/m3(16.1 μg/m3)。另一项后报验证实验表明,该模型的概括能力很强(R2 = 0.75;RMSE = 21.9 μg/m3)。与之前的研究相比,该模型在日尺度上的表现相当甚至更好,填补了 24 小时周期内每小时臭氧数据缺失的空白。更重要的是,在CLDAS数据RT可用性的支持下,O3的小时浓度可以在RT中更新,这有望推进我们对中国O3污染昼夜周期的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信