BrainFuseNet: Enhancing Wearable Seizure Detection Through EEG-PPG-Accelerometer Sensor Fusion and Efficient Edge Deployment

Thorir Mar Ingolfsson;Xiaying Wang;Upasana Chakraborty;Simone Benatti;Adriano Bernini;Pauline Ducouret;Philippe Ryvlin;Sándor Beniczky;Luca Benini;Andrea Cossettini
{"title":"BrainFuseNet: Enhancing Wearable Seizure Detection Through EEG-PPG-Accelerometer Sensor Fusion and Efficient Edge Deployment","authors":"Thorir Mar Ingolfsson;Xiaying Wang;Upasana Chakraborty;Simone Benatti;Adriano Bernini;Pauline Ducouret;Philippe Ryvlin;Sándor Beniczky;Luca Benini;Andrea Cossettini","doi":"10.1109/TBCAS.2024.3395534","DOIUrl":null,"url":null,"abstract":"This paper introduces \n<sc>BrainFuseNet</small>\n, a novel lightweight seizure detection network based on the sensor fusion of electroencephalography (EEG) with photoplethysmography (PPG) and accelerometer (ACC) signals, tailored for low-channel count wearable systems. \n<sc>BrainFuseNet</small>\n utilizes the Sensitivity-Specificity Weighted Cross-Entropy (SSWCE), an innovative loss function incorporating sensitivity and specificity, to address the challenge of heavily unbalanced datasets. The \n<sc>BrainFuseNet</small>\n-SSWCE approach successfully detects \n<inline-formula><tex-math>$93.5\\%$</tex-math></inline-formula>\n seizure events on the CHB-MIT dataset (\n<inline-formula><tex-math>$76.34\\%$</tex-math></inline-formula>\n sample-based sensitivity), for EEG-based classification with only four channels. On the PEDESITE dataset, we demonstrate a sample-based sensitivity and false positive rate of \n<inline-formula><tex-math>$60.66\\%$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$1.18$</tex-math></inline-formula>\n FP/h, respectively, when considering EEG data alone. Additionally, we demonstrate that integrating PPG signals increases the sensitivity to \n<inline-formula><tex-math>$61.22\\%$</tex-math></inline-formula>\n (successfully detecting \n<inline-formula><tex-math>$92\\%$</tex-math></inline-formula>\n seizure events) while decreasing the number of false positives to \n<inline-formula><tex-math>$1.0$</tex-math></inline-formula>\n FP/h. Finally, when ACC data are also considered, the sensitivity increases to \n<inline-formula><tex-math>$64.28\\%$</tex-math></inline-formula>\n (successfully detecting \n<inline-formula><tex-math>$95\\%$</tex-math></inline-formula>\n seizure events) and the number of false positives drops to only \n<inline-formula><tex-math>$0.21$</tex-math></inline-formula>\n FP/h for sample-based estimations, with less than one false alarm per day when considering event-based estimations. \n<sc>BrainFuseNet</small>\n is resource-friendly and well-suited for implementation on low-power embedded platforms, and we evaluate its performance on GAP9, a state-of-the-art parallel ultra-low power (PULP) microcontroller for tiny Machine Learning applications on wearables. The implementation on GAP9 achieves an energy efficiency of \n<inline-formula><tex-math>$21.43$</tex-math></inline-formula>\n GMAC/s/W, with an energy consumption per inference of only \n<inline-formula><tex-math>$0.11$</tex-math></inline-formula>\n mJ at high performance (\n<inline-formula><tex-math>$412.54$</tex-math></inline-formula>\n MMAC/s). The \n<sc>BrainFuseNet</small>\n-SSWCE method demonstrates effective and accurate seizure detection on heavily imbalanced datasets while achieving state-of-the-art performance in the false positive rate and being well-suited for deployment on energy-constrained edge devices.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 4","pages":"720-733"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10511055","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10511055/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces BrainFuseNet , a novel lightweight seizure detection network based on the sensor fusion of electroencephalography (EEG) with photoplethysmography (PPG) and accelerometer (ACC) signals, tailored for low-channel count wearable systems. BrainFuseNet utilizes the Sensitivity-Specificity Weighted Cross-Entropy (SSWCE), an innovative loss function incorporating sensitivity and specificity, to address the challenge of heavily unbalanced datasets. The BrainFuseNet -SSWCE approach successfully detects $93.5\%$ seizure events on the CHB-MIT dataset ( $76.34\%$ sample-based sensitivity), for EEG-based classification with only four channels. On the PEDESITE dataset, we demonstrate a sample-based sensitivity and false positive rate of $60.66\%$ and $1.18$ FP/h, respectively, when considering EEG data alone. Additionally, we demonstrate that integrating PPG signals increases the sensitivity to $61.22\%$ (successfully detecting $92\%$ seizure events) while decreasing the number of false positives to $1.0$ FP/h. Finally, when ACC data are also considered, the sensitivity increases to $64.28\%$ (successfully detecting $95\%$ seizure events) and the number of false positives drops to only $0.21$ FP/h for sample-based estimations, with less than one false alarm per day when considering event-based estimations. BrainFuseNet is resource-friendly and well-suited for implementation on low-power embedded platforms, and we evaluate its performance on GAP9, a state-of-the-art parallel ultra-low power (PULP) microcontroller for tiny Machine Learning applications on wearables. The implementation on GAP9 achieves an energy efficiency of $21.43$ GMAC/s/W, with an energy consumption per inference of only $0.11$ mJ at high performance ( $412.54$ MMAC/s). The BrainFuseNet -SSWCE method demonstrates effective and accurate seizure detection on heavily imbalanced datasets while achieving state-of-the-art performance in the false positive rate and being well-suited for deployment on energy-constrained edge devices.
BrainFuseNet:通过 EEG-PPG 加速计传感器融合和高效边缘部署增强可穿戴式癫痫发作检测能力
本文介绍的 BrainFuseNet 是一种新型轻量级癫痫发作检测网络,它基于脑电图 (EEG) 与光电血压计 (PPG) 和加速度计 (ACC) 信号的传感器融合,专为低通道数可穿戴系统量身定制。BrainFuseNet 利用灵敏度-特异性加权交叉熵(SSWCE)这一包含灵敏度和特异性的创新损失函数来应对严重不平衡数据集的挑战。BrainFuseNet-SSWCE 方法在 CHB-MIT 数据集上成功检测出 93.5%$ 的癫痫发作事件(基于样本的灵敏度为 76.34%$ ),用于仅有四个通道的基于脑电图的分类。在 PEDESITE 数据集上,如果仅考虑脑电图数据,我们证明基于样本的灵敏度和假阳性率分别为 60.66%$ 和 1.18$ FP/h。此外,我们还证明,整合 PPG 信号可将灵敏度提高到 61.22%$ (成功检测到 92%$ 癫痫发作事件),同时将误报率降低到 1.0$ FP/h。最后,当同时考虑 ACC 数据时,灵敏度增加到 64.28%/$(成功检测到 95%/$ 的癫痫发作事件),而基于样本估计的误报数量则下降到只有 0.21$ FP/h,当考虑基于事件估计时,误报数量每天不到一个。BrainFuseNet 资源友好,非常适合在低功耗嵌入式平台上实施,我们在 GAP9 上对其性能进行了评估,GAP9 是最先进的并行超低功耗(PULP)微控制器,适用于可穿戴设备上的微型机器学习应用。在 GAP9 上的实现实现了 21.43$ GMAC/s/W的能效,在高性能(412.54$ MMAC/s)下,每次推理的能耗仅为 0.11$ mJ。BrainFuseNet-SSWCE 方法在严重不平衡的数据集上展示了有效而准确的癫痫发作检测,同时在误报率方面达到了最先进的性能,非常适合部署在能源受限的边缘设备上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信