Keerthan Kumar T.G. , Shivangi Tomar , Sourav Kanti Addya , Anurag Satpathy , Shashidhar G. Koolagudi
{"title":"EFraS: Emulated framework to develop and analyze dynamic Virtual Network Embedding strategies over SDN infrastructure","authors":"Keerthan Kumar T.G. , Shivangi Tomar , Sourav Kanti Addya , Anurag Satpathy , Shashidhar G. Koolagudi","doi":"10.1016/j.simpat.2024.102952","DOIUrl":null,"url":null,"abstract":"<div><p>The integration of Software-Defined Networking (SDN) into Network Virtualization (NV) significantly enhances network management, isolation, and troubleshooting capabilities. However, it brings forth the intricate challenge of allocating Substrate Network (SN) resources for various Virtual Network Requests (VNRs), a process known as Virtual Network Embedding (VNE). It encompasses solving two intractable sub-problems: embedding Virtual Machines (VMs) and embedding Virtual Links (VLs). While the research community has focused on formulating embedding strategies, there has been less emphasis on practical implementation at a laboratory scale, which is crucial for comprehensive design, development, testing, and validation policies for large-scale systems. However, conducting tests using commercial providers presents challenges due to the scale of the problem and associated costs. Moreover, current simulators lack accuracy in representing the complexities of communication patterns, resource allocation, and support for SDN-specific features. These limitations result in inefficient implementations and reduced adaptability, hindering seamless integration with commercial cloud providers. To address this gap, this work introduces EFraS (Emulated Framework for Dynamic VNE Strategies over SDN). The goal is to aid developers and researchers in iterating, testing, and evaluating VNE solutions seamlessly, leveraging a modular design and customized reconfigurability. EFraS offers various functionalities, including generating real-world SN topologies and VNRs. Additionally, it integrates with a diverse set of evaluation metrics to streamline the testing and validation process. EFraS leverages <span>Mininet</span>, <span>Ryu</span> controller, and <span>OpenFlow</span> switches to closely emulate real-time setups. Moreover, we integrate EFraS with various state-of-the-art VNE schemes, ensuring the effective validation of embedding algorithms.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000662","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of Software-Defined Networking (SDN) into Network Virtualization (NV) significantly enhances network management, isolation, and troubleshooting capabilities. However, it brings forth the intricate challenge of allocating Substrate Network (SN) resources for various Virtual Network Requests (VNRs), a process known as Virtual Network Embedding (VNE). It encompasses solving two intractable sub-problems: embedding Virtual Machines (VMs) and embedding Virtual Links (VLs). While the research community has focused on formulating embedding strategies, there has been less emphasis on practical implementation at a laboratory scale, which is crucial for comprehensive design, development, testing, and validation policies for large-scale systems. However, conducting tests using commercial providers presents challenges due to the scale of the problem and associated costs. Moreover, current simulators lack accuracy in representing the complexities of communication patterns, resource allocation, and support for SDN-specific features. These limitations result in inefficient implementations and reduced adaptability, hindering seamless integration with commercial cloud providers. To address this gap, this work introduces EFraS (Emulated Framework for Dynamic VNE Strategies over SDN). The goal is to aid developers and researchers in iterating, testing, and evaluating VNE solutions seamlessly, leveraging a modular design and customized reconfigurability. EFraS offers various functionalities, including generating real-world SN topologies and VNRs. Additionally, it integrates with a diverse set of evaluation metrics to streamline the testing and validation process. EFraS leverages Mininet, Ryu controller, and OpenFlow switches to closely emulate real-time setups. Moreover, we integrate EFraS with various state-of-the-art VNE schemes, ensuring the effective validation of embedding algorithms.