{"title":"Genome-wide characterization, transcriptome profiling, and functional analysis of the ALMT gene family in Medicago for aluminum resistance","authors":"Dehui Jin, Jinlong Chen, Yumeng Kang, Fang Yang, Dongwen Yu, Xiaoqing Liu, Chengcheng Yan, Zhenfei Guo, Yang Zhang","doi":"10.1016/j.jplph.2024.154262","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum (Al) is the major limiting factor affecting plant productivity in acidic soils. Al<sup>3+</sup> ions exhibit increased solubility at a pH below 5, leading to plant root tip toxicity. Alternatively, plants can perceive very low concentrations of Al<sup>3+</sup>, and Al triggers downstream signaling even at pH 5.7 without causing Al toxicity. The ALUMINUM-ACTIVATED-MALATE-TRANSPORTER (ALMT) family members act as anion channels, with some regulating the secretion of malate from root apices to chelate Al, which is a crucial mechanism for plant Al resistance. To date, the role of the ALMT gene family within the legume <em>Medicago</em> species has not been fully characterized. In this study, we investigated the ALMT gene family in <em>M</em>. <em>sativa</em> and <em>M</em>. <em>truncatula</em> and identified 68 <em>MsALMTs</em> and 18 <em>MtALMTs</em>, respectively. Phylogenetic analysis classified these genes into five clades, and synteny analysis uncovered genuine paralogs and orthologs. The real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that <em>MtALMT8</em>, <em>MtALMT9</em>, and <em>MtALMT15</em> in clade 2-2b are expressed in both roots and root nodules, and <em>MtALMT8</em> and <em>MtALMT9</em> are significantly upregulated by Al in root tips. We also observed that <em>MtALMT8</em> and <em>MtALMT9</em> can partially restore the Al sensitivity of <em>Atalmt1</em> in <em>Arabidopsis</em>. Moreover, transcriptome analysis examined the expression patterns of these genes in <em>M</em>. <em>sativa</em> in response to Al at both pH 5.7 and pH 4.6, as well as to protons, and found that Al and protons can independently induce some Al-resistance genes. Overall, our findings indicate that <em>MtALMT8</em> and <em>MtALMT9</em> may play a role in Al resistance, and highlight the resemblance between the ALMT genes in <em>Medicago</em> species and those in <em>Arabidopsis</em>.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"297 ","pages":"Article 154262"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724000932","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminum (Al) is the major limiting factor affecting plant productivity in acidic soils. Al3+ ions exhibit increased solubility at a pH below 5, leading to plant root tip toxicity. Alternatively, plants can perceive very low concentrations of Al3+, and Al triggers downstream signaling even at pH 5.7 without causing Al toxicity. The ALUMINUM-ACTIVATED-MALATE-TRANSPORTER (ALMT) family members act as anion channels, with some regulating the secretion of malate from root apices to chelate Al, which is a crucial mechanism for plant Al resistance. To date, the role of the ALMT gene family within the legume Medicago species has not been fully characterized. In this study, we investigated the ALMT gene family in M. sativa and M. truncatula and identified 68 MsALMTs and 18 MtALMTs, respectively. Phylogenetic analysis classified these genes into five clades, and synteny analysis uncovered genuine paralogs and orthologs. The real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that MtALMT8, MtALMT9, and MtALMT15 in clade 2-2b are expressed in both roots and root nodules, and MtALMT8 and MtALMT9 are significantly upregulated by Al in root tips. We also observed that MtALMT8 and MtALMT9 can partially restore the Al sensitivity of Atalmt1 in Arabidopsis. Moreover, transcriptome analysis examined the expression patterns of these genes in M. sativa in response to Al at both pH 5.7 and pH 4.6, as well as to protons, and found that Al and protons can independently induce some Al-resistance genes. Overall, our findings indicate that MtALMT8 and MtALMT9 may play a role in Al resistance, and highlight the resemblance between the ALMT genes in Medicago species and those in Arabidopsis.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.