Tubulin posttranslational modifications through the lens of new technologies

IF 6 2区 生物学 Q1 CELL BIOLOGY
Gonzalo Alvarez Viar, Gaia Pigino
{"title":"Tubulin posttranslational modifications through the lens of new technologies","authors":"Gonzalo Alvarez Viar,&nbsp;Gaia Pigino","doi":"10.1016/j.ceb.2024.102362","DOIUrl":null,"url":null,"abstract":"<div><p>The Tubulin Code revolutionizes our understanding of microtubule dynamics and functions, proposing a nuanced system governed by tubulin isotypes, posttranslational modifications (PTMs) and microtubule-associated proteins (MAPs). Tubulin isotypes, diverse across species, contribute structural complexity, and are thought to influence microtubule functions. PTMs encode dynamic information on microtubules, which are read by several microtubule interacting proteins and impact on cellular processes. Here we discuss recent technological and methodological advances, such as in genome engineering, live cell imaging, expansion microscopy, and cryo-electron microscopy that reveal new elements and levels of complexity of the tubulin code, including new modifying enzymes and nanopatterns of PTMs on individual microtubules. The Tubulin Code's exploration holds transformative potential, guiding therapeutic strategies and illuminating connections to diseases like cancer and neurodegenerative disorders, underscoring its relevance in decoding fundamental cellular language.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"88 ","pages":"Article 102362"},"PeriodicalIF":6.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424000413/pdfft?md5=8b5932a6190c03ceff9ef8eb416a10e3&pid=1-s2.0-S0955067424000413-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000413","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Tubulin Code revolutionizes our understanding of microtubule dynamics and functions, proposing a nuanced system governed by tubulin isotypes, posttranslational modifications (PTMs) and microtubule-associated proteins (MAPs). Tubulin isotypes, diverse across species, contribute structural complexity, and are thought to influence microtubule functions. PTMs encode dynamic information on microtubules, which are read by several microtubule interacting proteins and impact on cellular processes. Here we discuss recent technological and methodological advances, such as in genome engineering, live cell imaging, expansion microscopy, and cryo-electron microscopy that reveal new elements and levels of complexity of the tubulin code, including new modifying enzymes and nanopatterns of PTMs on individual microtubules. The Tubulin Code's exploration holds transformative potential, guiding therapeutic strategies and illuminating connections to diseases like cancer and neurodegenerative disorders, underscoring its relevance in decoding fundamental cellular language.

通过新技术透视管蛋白翻译后修饰
微管蛋白密码》彻底改变了我们对微管动力学和功能的认识,提出了一个由微管蛋白异型、翻译后修饰(PTM)和微管相关蛋白(MAP)支配的微妙系统。不同物种的微管蛋白异型具有不同的结构复杂性,被认为会影响微管的功能。PTMs 编码微管的动态信息,由多种微管相互作用蛋白读取,并对细胞过程产生影响。在此,我们将讨论最近在基因组工程、活细胞成像、膨胀显微镜和冷冻电镜等方面取得的技术和方法上的进展,这些进展揭示了微管蛋白密码的新元素和复杂程度,包括新的修饰酶和单个微管上 PTM 的纳米模式。对微管蛋白密码的探索具有变革性的潜力,可以指导治疗策略,阐明与癌症和神经退行性疾病等疾病的联系,强调其在解码基本细胞语言方面的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信