Hancheng Guan , Manunya Nuth , Richard W. Scott , Michael H. Parker , Eric D. Strobel , Allen B. Reitz , John L. Kulp III , Robert P. Ricciardi
{"title":"Potency of a small molecule that targets the molluscum contagiosum virus processivity factor increases when conjugated to a tripeptide","authors":"Hancheng Guan , Manunya Nuth , Richard W. Scott , Michael H. Parker , Eric D. Strobel , Allen B. Reitz , John L. Kulp III , Robert P. Ricciardi","doi":"10.1016/j.antiviral.2024.105899","DOIUrl":null,"url":null,"abstract":"<div><p>We recently developed compound <strong>FC-7269</strong> for targeting the Molluscum contagiosum virus processivity factor (mD4) and demonstrated its ability to inhibit viral processive DNA synthesis <em>in vitro</em> and cellular infection of an mD4-dependent virus (<em>Antiviral Res 211, 2023,105520</em>). However, despite a thorough medicinal chemistry campaign we were unable to generate a potent second analog as a requisite for drug development. We overcame this impasse, by conjugating a short hydrophobic trivaline peptide to <strong>FC-7269</strong> to produce <strong>FC-TriVal-7269</strong> which significantly increased antiviral potency and reduced cellular toxicity.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224001086","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
We recently developed compound FC-7269 for targeting the Molluscum contagiosum virus processivity factor (mD4) and demonstrated its ability to inhibit viral processive DNA synthesis in vitro and cellular infection of an mD4-dependent virus (Antiviral Res 211, 2023,105520). However, despite a thorough medicinal chemistry campaign we were unable to generate a potent second analog as a requisite for drug development. We overcame this impasse, by conjugating a short hydrophobic trivaline peptide to FC-7269 to produce FC-TriVal-7269 which significantly increased antiviral potency and reduced cellular toxicity.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.