Effect of precooling the in-charged on the performance of hydrogen storage systems packed with typical kinds of adsorbents

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Mengbo Wu, Qingrong Zheng, Shanshan Li, Dong Guo, Hu Wang
{"title":"Effect of precooling the in-charged on the performance of hydrogen storage systems packed with typical kinds of adsorbents","authors":"Mengbo Wu,&nbsp;Qingrong Zheng,&nbsp;Shanshan Li,&nbsp;Dong Guo,&nbsp;Hu Wang","doi":"10.1016/j.cryogenics.2024.103852","DOIUrl":null,"url":null,"abstract":"<div><p>Selecting suitable adsorbents and managing the thermal effect are two important aspects on the practical application of the hydrogen storage system by adsorption. In this research, three kinds of promising adsorbents, which include MOF-5, MIL-101(Cr) and activated carbon AX-21, were selected for evaluating the effect of pre-cooling of hydrogen in-charged into a 0.5 L cylindrical vessel experimentally and numerically as per the temperature fluctuation, heat generated, accumulated amount of the charge under the flow rate of hydrogen required by an on board 5 kW PEMFC power unit. The validation of the prediction accuracy of the model was performed by the experiments conducted respectively at 77.15 K and 298.15 K where the vessel was packed with MIL-101(Cr). Simulations were further performed to evaluate the performance of the vessel respectively packed with three kinds of adsorbents within the flow rate range 15–40 L min<sup>−1</sup> and temperature range 77.15–298.15 K. Results show that precooling the hydrogen in-charged is conducive to weakening the temperature fluctuation of the storage system, and heat from adsorption is the main factor affecting the accumulated amount of charge and the temperature fluctuation within the hydrogen storage system. It suggests that MOF-5 is a more suitable hydrogen storage medium than MIL-101(Cr) and AX-21, and charging the system with hydrogen precooled at 77.15 K under a smaller flow rate is beneficial to improving the performance of the storage system.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524000729","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Selecting suitable adsorbents and managing the thermal effect are two important aspects on the practical application of the hydrogen storage system by adsorption. In this research, three kinds of promising adsorbents, which include MOF-5, MIL-101(Cr) and activated carbon AX-21, were selected for evaluating the effect of pre-cooling of hydrogen in-charged into a 0.5 L cylindrical vessel experimentally and numerically as per the temperature fluctuation, heat generated, accumulated amount of the charge under the flow rate of hydrogen required by an on board 5 kW PEMFC power unit. The validation of the prediction accuracy of the model was performed by the experiments conducted respectively at 77.15 K and 298.15 K where the vessel was packed with MIL-101(Cr). Simulations were further performed to evaluate the performance of the vessel respectively packed with three kinds of adsorbents within the flow rate range 15–40 L min−1 and temperature range 77.15–298.15 K. Results show that precooling the hydrogen in-charged is conducive to weakening the temperature fluctuation of the storage system, and heat from adsorption is the main factor affecting the accumulated amount of charge and the temperature fluctuation within the hydrogen storage system. It suggests that MOF-5 is a more suitable hydrogen storage medium than MIL-101(Cr) and AX-21, and charging the system with hydrogen precooled at 77.15 K under a smaller flow rate is beneficial to improving the performance of the storage system.

对装有典型吸附剂的储氢系统进行充气预冷对其性能的影响
选择合适的吸附剂和控制热效应是吸附储氢系统实际应用的两个重要方面。本研究选择了 MOF-5、MIL-101(Cr) 和活性炭 AX-21 这三种有前景的吸附剂,根据 5 kW PEMFC 功率单元所需的氢气流量下的温度波动、产生的热量、充入氢气的累积量,通过实验和数值方法评估了充入 0.5 L 圆柱形容器中的氢气的预冷效果。通过在 77.15 K 和 298.15 K 下分别进行的实验验证了模型的预测准确性,实验中容器内填充了 MIL-101(Cr)。结果表明,对充入的氢气进行预冷有利于减弱储氢系统的温度波动,吸附热是影响储氢系统内电荷累积量和温度波动的主要因素。这表明,MOF-5 是比 MIL-101(Cr) 和 AX-21 更合适的储氢介质,在较小的流速下用 77.15 K 预冷氢气充注系统有利于提高储氢系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信