{"title":"Antagonistic ecosystem engineering effects differ by seagrass life stage and density of bioturbating shrimp","authors":"Wesley W. Hull, Jennifer L. Ruesink","doi":"10.1016/j.jembe.2024.152016","DOIUrl":null,"url":null,"abstract":"<div><p>Because ecosystem engineers shape environmental conditions, interactions between ecosystem engineers can depend not only on the external environment but on “which species arrives when” within habitats. Yet, while endpoint outcomes for adults at high density have often been investigated, few studies have examined how these interactions change across density and life history stages. We tested for antagonistic engineering effects of the burrowing shrimp <em>Neotrypaea californiensis</em> (Dana, 1852) at a range of densities on eelgrass <em>Zostera marina</em> L.<em>,</em> 1753, including seedlings as well as vegetative shoots. In an observational study, abrupt borders of eelgrass beds were not mirrored by shrimp, and shrimp were never excluded across the full range of observed eelgrass densities, patterns that are inconsistent with alternative stable states. However, eelgrass density declined with increasing shrimp density, and no eelgrass occurred at >336 shrimp m<sup>−2</sup>. Survival of eelgrass transplants also declined with increasing shrimp density, and in a manipulative experiment, seedlings declined more rapidly than vegetative shoots within a shrimp bed. Thus, shrimp have strong antagonistic engineering effects on eelgrass that increase with shrimp density and can preclude successful seedling establishment and persistence of vegetative shoots.</p></div>","PeriodicalId":50197,"journal":{"name":"Journal of Experimental Marine Biology and Ecology","volume":"576 ","pages":"Article 152016"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Marine Biology and Ecology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022098124000315","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Because ecosystem engineers shape environmental conditions, interactions between ecosystem engineers can depend not only on the external environment but on “which species arrives when” within habitats. Yet, while endpoint outcomes for adults at high density have often been investigated, few studies have examined how these interactions change across density and life history stages. We tested for antagonistic engineering effects of the burrowing shrimp Neotrypaea californiensis (Dana, 1852) at a range of densities on eelgrass Zostera marina L., 1753, including seedlings as well as vegetative shoots. In an observational study, abrupt borders of eelgrass beds were not mirrored by shrimp, and shrimp were never excluded across the full range of observed eelgrass densities, patterns that are inconsistent with alternative stable states. However, eelgrass density declined with increasing shrimp density, and no eelgrass occurred at >336 shrimp m−2. Survival of eelgrass transplants also declined with increasing shrimp density, and in a manipulative experiment, seedlings declined more rapidly than vegetative shoots within a shrimp bed. Thus, shrimp have strong antagonistic engineering effects on eelgrass that increase with shrimp density and can preclude successful seedling establishment and persistence of vegetative shoots.
期刊介绍:
The Journal of Experimental Marine Biology and Ecology provides a forum for experimental ecological research on marine organisms in relation to their environment. Topic areas include studies that focus on biochemistry, physiology, behavior, genetics, and ecological theory. The main emphasis of the Journal lies in hypothesis driven experimental work, both from the laboratory and the field. Natural experiments or descriptive studies that elucidate fundamental ecological processes are welcome. Submissions should have a broad ecological framework beyond the specific study organism or geographic region.
Short communications that highlight emerging issues and exciting discoveries within five printed pages will receive a rapid turnaround. Papers describing important new analytical, computational, experimental and theoretical techniques and methods are encouraged and will be highlighted as Methodological Advances. We welcome proposals for Review Papers synthesizing a specific field within marine ecology. Finally, the journal aims to publish Special Issues at regular intervals synthesizing a particular field of marine science. All printed papers undergo a peer review process before being accepted and will receive a first decision within three months.