Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model

IF 19.8 1区 医学 Q1 CELL & TISSUE ENGINEERING
Dhiraj Indana, Andrei Zakharov, Youngbin Lim, Alexander R. Dunn, Nidhi Bhutani, Vivek B. Shenoy, Ovijit Chaudhuri
{"title":"Lumen expansion is initially driven by apical actin polymerization followed by osmotic pressure in a human epiblast model","authors":"Dhiraj Indana, Andrei Zakharov, Youngbin Lim, Alexander R. Dunn, Nidhi Bhutani, Vivek B. Shenoy, Ovijit Chaudhuri","doi":"10.1016/j.stem.2024.03.016","DOIUrl":null,"url":null,"abstract":"<p>Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 μm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.</p>","PeriodicalId":9665,"journal":{"name":"Cell stem cell","volume":null,"pages":null},"PeriodicalIF":19.8000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell stem cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2024.03.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 μm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.

Abstract Image

在人类外胚层模型中,管腔扩张最初由顶端肌动蛋白聚合驱动,随后由渗透压驱动
胚胎植入后,人类胚胎的多能上胚层会形成一个中央管腔,为胃形成铺平道路。渗透压梯度被认为是整个发育过程中管腔扩张的驱动力,但它们在人类上胚层中的作用尚不清楚。在这里,我们使用工程水凝胶研究了基于多能干细胞的上胚层模型中的管腔形成。我们发现,渗漏连接阻止了早期上胚泡中的渗透压梯度,相反,顶端肌动蛋白聚合的力量推动了管腔的扩张。一旦管腔半径达到 12 μm,紧密连接就会成熟,渗透压梯度就会形成,从而推动管腔进一步生长。计算模型表明,顶端肌动蛋白聚合成一个坚硬的网络介导了最初的管腔扩张,并预测较大的外胚层会过渡到压力驱动的生长,以避免弯曲。人类外胚层显示出与这些机制一致的转录特征。因此,肌动蛋白聚合推动了人类上胚层的管腔扩张,并可能成为早期管腔形成的一般机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell stem cell
Cell stem cell 生物-细胞生物学
CiteScore
37.10
自引率
2.50%
发文量
151
审稿时长
42 days
期刊介绍: Cell Stem Cell is a comprehensive journal covering the entire spectrum of stem cell biology. It encompasses various topics, including embryonic stem cells, pluripotency, germline stem cells, tissue-specific stem cells, differentiation, epigenetics, genomics, cancer stem cells, stem cell niches, disease models, nuclear transfer technology, bioengineering, drug discovery, in vivo imaging, therapeutic applications, regenerative medicine, clinical insights, research policies, ethical considerations, and technical innovations. The journal welcomes studies from any model system providing insights into stem cell biology, with a focus on human stem cells. It publishes research reports of significant importance, along with review and analysis articles covering diverse aspects of stem cell research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信