Inconsistency between the micropolar theory and non-equilibrium thermodynamics in the case of polar fluids

IF 4.3 3区 工程技术 Q1 MECHANICS
Pavlos S. Stephanou
{"title":"Inconsistency between the micropolar theory and non-equilibrium thermodynamics in the case of polar fluids","authors":"Pavlos S. Stephanou","doi":"10.1515/jnet-2023-0106","DOIUrl":null,"url":null,"abstract":"The balance equation of angular momentum in anisotropic fluids includes a couple stress contribution, also responsible for an antisymmetric contribution to the force stress tensor. We herein derive all balance equations for the simplest anisotropic fluid, i.e., a polar fluid, using the GENERIC formalism of non-equilibrium thermodynamics. In doing so, we find that there is an inconsistency between the internal energy density evolution equation derived using non-equilibrium thermodynamics and the one usually considered in micropolar theory.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0106","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The balance equation of angular momentum in anisotropic fluids includes a couple stress contribution, also responsible for an antisymmetric contribution to the force stress tensor. We herein derive all balance equations for the simplest anisotropic fluid, i.e., a polar fluid, using the GENERIC formalism of non-equilibrium thermodynamics. In doing so, we find that there is an inconsistency between the internal energy density evolution equation derived using non-equilibrium thermodynamics and the one usually considered in micropolar theory.
极性流体微波理论与非平衡热力学之间的不一致性
各向异性流体中的角动量平衡方程包括一个耦合应力贡献,它也是力应力张量的非对称贡献。在此,我们利用非平衡热力学的 GENERIC 形式推导出最简单的各向异性流体(即极性流体)的所有平衡方程。在此过程中,我们发现使用非平衡热力学推导出的内能密度演化方程与微极性理论中通常考虑的内能密度演化方程之间存在不一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信