Robust and efficient Iron-Based electrodes for hydrogen production from seawater at high current density above 1000 mA cm−2

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xian Zhang, Huanyu Zhu, Ziteng Zuo, Mengtian Jin, Ouwen Peng, Qing Lian, Yulan Huang, Peng Cheng, Zhong Ai, Shengling Xiang, Abbas Amini, Shaoxian Song, Feifei Jia, Zhiguang Guo, Chun Cheng
{"title":"Robust and efficient Iron-Based electrodes for hydrogen production from seawater at high current density above 1000 mA cm−2","authors":"Xian Zhang, Huanyu Zhu, Ziteng Zuo, Mengtian Jin, Ouwen Peng, Qing Lian, Yulan Huang, Peng Cheng, Zhong Ai, Shengling Xiang, Abbas Amini, Shaoxian Song, Feifei Jia, Zhiguang Guo, Chun Cheng","doi":"10.1016/j.cej.2024.151705","DOIUrl":null,"url":null,"abstract":"The implementation of cheap iron-based catalysts for seawater electrolysis at high- current–density offers an economical and sustainable solution for industrial hydrogen production in near future. However, Fe-based electrodes suffer from poor intrinsic activity and corrosion resistance in seawater, resulting in unsatisfactory seawater splitting performance. Here, we reported the scale-up fabrication of whole-Fe-based electrodes (NiFe-X (X = O, P) NAs/Fe foam) by facile soaking-phosphating. Surface active layers exhibit enhanced corrosion resistance compared to bare Fe foam, and trace Ni modification lowers reaction energy barriers of cathodic NiFeP and in-situ generated anodic NiFeOOH, respectively. Thus, NiFe-P||NiFe-O pair only requires 1.93 V to deliver 3000 mA cm at 6 M KOH, 60 °C for overall seawater splitting, and works stably for 200 h at 1000 mA cm. Furthermore, NiFe-X (X = O, P) NAs/Fe foam show impressive adaptation to fresh water/tap water/seawater and all kinds of renewable energies, presenting excellent flexibility for various environmental applications and scenarios.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.151705","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of cheap iron-based catalysts for seawater electrolysis at high- current–density offers an economical and sustainable solution for industrial hydrogen production in near future. However, Fe-based electrodes suffer from poor intrinsic activity and corrosion resistance in seawater, resulting in unsatisfactory seawater splitting performance. Here, we reported the scale-up fabrication of whole-Fe-based electrodes (NiFe-X (X = O, P) NAs/Fe foam) by facile soaking-phosphating. Surface active layers exhibit enhanced corrosion resistance compared to bare Fe foam, and trace Ni modification lowers reaction energy barriers of cathodic NiFeP and in-situ generated anodic NiFeOOH, respectively. Thus, NiFe-P||NiFe-O pair only requires 1.93 V to deliver 3000 mA cm at 6 M KOH, 60 °C for overall seawater splitting, and works stably for 200 h at 1000 mA cm. Furthermore, NiFe-X (X = O, P) NAs/Fe foam show impressive adaptation to fresh water/tap water/seawater and all kinds of renewable energies, presenting excellent flexibility for various environmental applications and scenarios.

Abstract Image

稳健高效的铁基电极,用于在 1000 mA cm-2 以上的高电流密度条件下从海水中制氢
采用廉价的铁基催化剂在高电流密度下进行海水电解,为不久的将来工业制氢提供了一种经济、可持续的解决方案。然而,铁基电极在海水中的本征活性和耐腐蚀性较差,导致海水分离性能不理想。在此,我们报告了通过简单的浸泡-磷化法放大制备全铁基电极(NiFe-X(X = O、P)NAs/Fe 泡沫)的过程。与裸露的泡沫铁相比,表面活性层表现出更强的耐腐蚀性,痕量镍修饰分别降低了阴极NiFeP和原位生成的阳极NiFeOOH的反应能垒。因此,NiFe-P||NiFe-O 对在 6 M KOH、60 °C 的条件下只需要 1.93 V 的电压就能提供 3000 mA cm 的电流,并能在 1000 mA cm 的条件下稳定工作 200 小时。此外,NiFe-X(X = O、P)NAs/Fe 泡沫对淡水/自来水/海水和各种可再生能源的适应性令人印象深刻,为各种环境应用和方案提供了出色的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信