How much can heavy lines cover?

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Damian Dąbrowski, Tuomas Orponen, Hong Wang
{"title":"How much can heavy lines cover?","authors":"Damian Dąbrowski,&nbsp;Tuomas Orponen,&nbsp;Hong Wang","doi":"10.1112/jlms.12910","DOIUrl":null,"url":null,"abstract":"<p>One formulation of Marstrand's slicing theorem is the following. Assume that <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$t \\in (1,2]$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$B \\subset \\mathbb {R}^{2}$</annotation>\n </semantics></math> is a Borel set with <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mi>t</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\mathcal {H}^{t}(B) &amp;lt; \\infty$</annotation>\n </semantics></math>. Then, for almost all directions <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>∈</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$e \\in S^{1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>t</mi>\n </msup>\n <annotation>$\\mathcal {H}^{t}$</annotation>\n </semantics></math> almost all of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> is covered by lines <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math> parallel to <span></span><math>\n <semantics>\n <mi>e</mi>\n <annotation>$e$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>dim</mo>\n <mi>H</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>∩</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim _{\\mathrm{H}}(B \\cap \\ell) = t - 1$</annotation>\n </semantics></math>. We investigate the prospects of sharpening Marstrand's result in the following sense: in a generic direction <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>∈</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$e \\in S^{1}$</annotation>\n </semantics></math>, is it true that a strictly less than <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math>-dimensional part of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> is covered by the heavy lines <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\ell \\subset \\mathbb {R}^{2}$</annotation>\n </semantics></math>, namely those with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>dim</mo>\n <mi>H</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>∩</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim _{\\mathrm{H}} (B \\cap \\ell) &amp;gt; t - 1$</annotation>\n </semantics></math>? A positive answer for <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math>-regular sets <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$B \\subset \\mathbb {R}^{2}$</annotation>\n </semantics></math> was previously obtained by the first author. The answer for general Borel sets turns out to be negative for <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mstyle>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n </mstyle>\n <mo>]</mo>\n </mrow>\n <annotation>$t \\in (1,\\tfrac{3}{2}]$</annotation>\n </semantics></math> and positive for <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mstyle>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n </mstyle>\n <mo>,</mo>\n <mn>2</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$t \\in (\\tfrac{3}{2},2]$</annotation>\n </semantics></math>. More precisely, the heavy lines can cover up to a <span></span><math>\n <semantics>\n <mrow>\n <mi>min</mi>\n <mo>{</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mn>3</mn>\n <mo>−</mo>\n <mi>t</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\min \\lbrace t,3 - t\\rbrace$</annotation>\n </semantics></math> dimensional part of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> in a generic direction. We also consider the part of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> covered by the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math>-heavy lines, namely those with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>dim</mo>\n <mi>H</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>∩</mo>\n <mi>ℓ</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩾</mo>\n <mi>s</mi>\n </mrow>\n <annotation>$\\dim _{\\mathrm{H}}(B \\cap \\ell) \\geqslant s$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>&gt;</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$s &amp;gt; t - 1$</annotation>\n </semantics></math>. We establish a sharp answer to the question: how much can the <span></span><math>\n <semantics>\n <mi>s</mi>\n <annotation>$s$</annotation>\n </semantics></math>-heavy lines cover in a generic direction? Finally, we identify a new class of sets called sub-uniformly distributed sets, which generalise Ahlfors-regular sets. Roughly speaking, these sets share the spatial uniformity of Ahlfors-regular sets, but pose no restrictions on uniformity across different scales. We then extend and sharpen the first author's previous result on Ahlfors-regular sets to the class of sub-uniformly distributed sets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12910","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12910","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

One formulation of Marstrand's slicing theorem is the following. Assume that t ( 1 , 2 ] $t \in (1,2]$ , and B R 2 $B \subset \mathbb {R}^{2}$ is a Borel set with H t ( B ) < $\mathcal {H}^{t}(B) &lt; \infty$ . Then, for almost all directions e S 1 $e \in S^{1}$ , H t $\mathcal {H}^{t}$ almost all of B $B$ is covered by lines $\ell$ parallel to e $e$ with dim H ( B ) = t 1 $\dim _{\mathrm{H}}(B \cap \ell) = t - 1$ . We investigate the prospects of sharpening Marstrand's result in the following sense: in a generic direction e S 1 $e \in S^{1}$ , is it true that a strictly less than t $t$ -dimensional part of B $B$ is covered by the heavy lines R 2 $\ell \subset \mathbb {R}^{2}$ , namely those with dim H ( B ) > t 1 $\dim _{\mathrm{H}} (B \cap \ell) &gt; t - 1$ ? A positive answer for t $t$ -regular sets B R 2 $B \subset \mathbb {R}^{2}$ was previously obtained by the first author. The answer for general Borel sets turns out to be negative for t ( 1 , 3 2 ] $t \in (1,\tfrac{3}{2}]$ and positive for t ( 3 2 , 2 ] $t \in (\tfrac{3}{2},2]$ . More precisely, the heavy lines can cover up to a min { t , 3 t } $\min \lbrace t,3 - t\rbrace$ dimensional part of B $B$ in a generic direction. We also consider the part of B $B$ covered by the s $s$ -heavy lines, namely those with dim H ( B ) s $\dim _{\mathrm{H}}(B \cap \ell) \geqslant s$ for s > t 1 $s &gt; t - 1$ . We establish a sharp answer to the question: how much can the s $s$ -heavy lines cover in a generic direction? Finally, we identify a new class of sets called sub-uniformly distributed sets, which generalise Ahlfors-regular sets. Roughly speaking, these sets share the spatial uniformity of Ahlfors-regular sets, but pose no restrictions on uniformity across different scales. We then extend and sharpen the first author's previous result on Ahlfors-regular sets to the class of sub-uniformly distributed sets.

Abstract Image

重型线路的覆盖范围有多大?
更确切地说,粗线条可以覆盖到最小 { t , 3 - t }。 $min \lbrace t,3 - t\rbrace$ 维的部分。我们还考虑了 B $B$ 被 s $s$ 重线覆盖的部分,即那些 dim H ( B ∩ ℓ ) ⩾ s $\dim _{mathrm{H}}(B \cap \ell) \geqslant s$ for s &gt; t - 1 $s &amp;gt; t - 1$ 。我们给出了问题的明确答案:在一般方向上,s $s$ 重线能覆盖多少范围?最后,我们确定了一类新的集合,称为亚均匀分布集合,它们是阿弗斯正则集合的一般化。粗略地说,这些集合与 Ahlfors 不规则集合一样具有空间均匀性,但对不同尺度上的均匀性没有限制。然后,我们将第一作者之前关于阿氏正则集合的结果扩展到次均匀分布集合类,并使之更加清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信