β-Cyclodextrin metal-organic framework as a green carrier to improve the dissolution, bioavailability, and liver protective effect of luteolin

IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Dan Yang , Min Zhao , Yihe Huang , Liwen Chen , Jiqin Fang , Jiaonan Liu , Miao Wang , Chunjie Zhao
{"title":"β-Cyclodextrin metal-organic framework as a green carrier to improve the dissolution, bioavailability, and liver protective effect of luteolin","authors":"Dan Yang ,&nbsp;Min Zhao ,&nbsp;Yihe Huang ,&nbsp;Liwen Chen ,&nbsp;Jiqin Fang ,&nbsp;Jiaonan Liu ,&nbsp;Miao Wang ,&nbsp;Chunjie Zhao","doi":"10.1016/j.ijpx.2024.100250","DOIUrl":null,"url":null,"abstract":"<div><p>The incidence of acetaminophen-induced liver injury has increased, but effective prevention methods are limited. Although luteolin has hepatoprotective activity, its low solubility and bioavailability limit its applications. Cyclodextrin metal-organic frameworks (CD-MOFs) possess 3D-network structures and large inner cavities, which make them excellent carriers of poorly soluble drugs. In this study, we used CD-MOFs as carriers to improve the dissolution of luteolin and assessed their antioxidant activity, bioavailability, and hepatoprotective effects. Luteolin was loaded into β-CD-MOF, γ-CD-MOF, β-CD, and γ-CD, and characterized by powder X-ray diffractometry (PXRD) and thermogravimetric analysis (TGA). Our results showed that luteolin-β-CD-MOF was the most stable. The main driving forces were hydrogen bonds and van der Waals forces, as determined by molecular simulation. The loading capacity of luteolin-β-CD-MOF was 14.67 wt%. Compared to raw luteolin, luteolin-β-CD-MOF exhibited a 4.50-fold increase in dissolution and increased antioxidant activity <em>in vitro</em>. Luteolin-β-CD-MOF increased the bioavailability of luteolin by approximately 4.04- and 11.07-fold in healthy rats and liver injured rats induced by acetaminophen <em>in vivo</em>, respectively. As determined by biochemical analysis, luteolin-β-CD-MOF exhibited a better hepatoprotective effect than raw luteolin in rats with acetaminophen-induced liver injury. This study provides a new approach for preventing acetaminophen-mediated liver damage.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000227/pdfft?md5=c6f32db4696c4216d3e1851761876fe9&pid=1-s2.0-S2590156724000227-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000227","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of acetaminophen-induced liver injury has increased, but effective prevention methods are limited. Although luteolin has hepatoprotective activity, its low solubility and bioavailability limit its applications. Cyclodextrin metal-organic frameworks (CD-MOFs) possess 3D-network structures and large inner cavities, which make them excellent carriers of poorly soluble drugs. In this study, we used CD-MOFs as carriers to improve the dissolution of luteolin and assessed their antioxidant activity, bioavailability, and hepatoprotective effects. Luteolin was loaded into β-CD-MOF, γ-CD-MOF, β-CD, and γ-CD, and characterized by powder X-ray diffractometry (PXRD) and thermogravimetric analysis (TGA). Our results showed that luteolin-β-CD-MOF was the most stable. The main driving forces were hydrogen bonds and van der Waals forces, as determined by molecular simulation. The loading capacity of luteolin-β-CD-MOF was 14.67 wt%. Compared to raw luteolin, luteolin-β-CD-MOF exhibited a 4.50-fold increase in dissolution and increased antioxidant activity in vitro. Luteolin-β-CD-MOF increased the bioavailability of luteolin by approximately 4.04- and 11.07-fold in healthy rats and liver injured rats induced by acetaminophen in vivo, respectively. As determined by biochemical analysis, luteolin-β-CD-MOF exhibited a better hepatoprotective effect than raw luteolin in rats with acetaminophen-induced liver injury. This study provides a new approach for preventing acetaminophen-mediated liver damage.

Abstract Image

β-环糊精金属有机框架作为一种绿色载体,可提高叶黄素的溶解度、生物利用度和肝脏保护作用
对乙酰氨基酚诱发肝损伤的发病率有所上升,但有效的预防方法却很有限。虽然木犀草素具有保肝活性,但其溶解度和生物利用度较低,限制了其应用。环糊精金属有机框架(CD-MOFs)具有三维网络结构和较大的内腔,是溶解性较差药物的优良载体。在这项研究中,我们使用 CD-MOFs 作为载体来提高叶黄素的溶解度,并评估了它们的抗氧化活性、生物利用度和保肝作用。我们将叶黄素载入了β-CD-MOF、γ-CD-MOF、β-CD 和 γ-CD,并通过粉末 X 射线衍射仪(PXRD)和热重分析(TGA)对其进行了表征。结果表明,木犀草素-β-CD-MOF 最为稳定。分子模拟确定的主要驱动力是氢键和范德华力。木犀草素-β-CD-MOF 的负载能力为 14.67 wt%。与未加工的木犀草素相比,木犀草素-β-CD-MOF 的溶解度提高了 4.50 倍,体外抗氧化活性也有所提高。在健康大鼠和对乙酰氨基酚引起的肝损伤大鼠体内,叶黄素-β-CD-MOF 使叶黄素的生物利用率分别提高了约 4.04 倍和 11.07 倍。生化分析表明,在对乙酰氨基酚诱发肝损伤的大鼠体内,叶黄素-β-CD-MOF 的保肝效果优于未加工的叶黄素。这项研究为预防对乙酰氨基酚引起的肝损伤提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Pharmaceutics: X
International Journal of Pharmaceutics: X Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.60
自引率
0.00%
发文量
32
审稿时长
24 days
文献相关原料
公司名称 产品信息 采购帮参考价格
麦克林 Polyethylene glycol 20,000 (PEG 20000)
¥17.00~¥22400.00
阿拉丁 2, 2-diphenyl-1-picrylhydrazyl (DPPH)
¥50.00~¥18992.00
上海源叶 Luteolin-3′-D-glucuronide
¥628.00~¥8830.00
上海源叶 Acetaminophen
¥15.00~¥5173.00
上海源叶 Luteolin
阿拉丁 2, 2′-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS)
阿拉丁 Vitamin C (VC)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信