{"title":"Sustainable media feedstocks for cellular agriculture","authors":"Lutz Grossmann","doi":"10.1016/j.biotechadv.2024.108367","DOIUrl":null,"url":null,"abstract":"<div><p>The global food system is shifting towards cellular agriculture, a second domestication marked by cultivating microorganisms and tissues for sustainable food production. This involves tissue engineering, precision fermentation, and microbial biomass fermentation to establish food value chains independent of traditional agriculture. However, these techniques rely on growth media sourced from agricultural, chemical (fossil fuels), and mining supply chains, raising concerns about land use competition, emissions, and resource depletion. Fermentable sugars, nitrogen, and phosphates are key ingredients derived from starch crops, energy-intensive fossil fuel based processes, and finite phosphorus resources, respectively. This review explores sustainable alternatives to reduce land use and emissions associated with cellular agriculture media ingredients. Sustainable alternatives to first generation sugars (lignocellulosic substrates, sidestreams, and gaseous feedstocks), sustainable nitrogen sources (sidestreams, green ammonia, biological nitrogen fixation), and efficient use of phosphates are reviewed. Especially cellulosic sugars, gaseous chemoautotrophic feedstocks, green ammonia, and phosphate recycling are the most promising technologies but economic constraints hinder large-scale adoption, necessitating more efficient processes and cost reduction. Collaborative efforts are vital for a biotechnological future grounded in sustainable feedstocks, mitigating competition with agricultural land and emissions.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"73 ","pages":"Article 108367"},"PeriodicalIF":12.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975024000612","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global food system is shifting towards cellular agriculture, a second domestication marked by cultivating microorganisms and tissues for sustainable food production. This involves tissue engineering, precision fermentation, and microbial biomass fermentation to establish food value chains independent of traditional agriculture. However, these techniques rely on growth media sourced from agricultural, chemical (fossil fuels), and mining supply chains, raising concerns about land use competition, emissions, and resource depletion. Fermentable sugars, nitrogen, and phosphates are key ingredients derived from starch crops, energy-intensive fossil fuel based processes, and finite phosphorus resources, respectively. This review explores sustainable alternatives to reduce land use and emissions associated with cellular agriculture media ingredients. Sustainable alternatives to first generation sugars (lignocellulosic substrates, sidestreams, and gaseous feedstocks), sustainable nitrogen sources (sidestreams, green ammonia, biological nitrogen fixation), and efficient use of phosphates are reviewed. Especially cellulosic sugars, gaseous chemoautotrophic feedstocks, green ammonia, and phosphate recycling are the most promising technologies but economic constraints hinder large-scale adoption, necessitating more efficient processes and cost reduction. Collaborative efforts are vital for a biotechnological future grounded in sustainable feedstocks, mitigating competition with agricultural land and emissions.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.