Brian T. Le , Katherine M. Auer , David A. Lopez , Justin P. Shum , Brian Suarsana , Ga-Young Kelly Suh , Per Niklas Hedde , Siavash Ahrar
{"title":"Orthogonal-view microscope for the biomechanics investigations of aquatic organisms","authors":"Brian T. Le , Katherine M. Auer , David A. Lopez , Justin P. Shum , Brian Suarsana , Ga-Young Kelly Suh , Per Niklas Hedde , Siavash Ahrar","doi":"10.1016/j.ohx.2024.e00533","DOIUrl":null,"url":null,"abstract":"<div><p>Microscopes are essential for the biomechanical and hydrodynamical investigation of small aquatic organisms. We report a prototype of a do-it-yourself microscope that enables the visualization of organisms from two orthogonal imaging planes — top and side views. Compared to conventional imaging systems, this approach provides a comprehensive visualization strategy of organisms, which could have complex shapes and morphologies. The microscope was constructed by combining custom 3D-printed parts and off-the-shelf components. The system is designed for modularity and reconfigurability. Open-source design files and build instructions are provided in this report. Additionally, proof-of-use experiments (particularly with <em>Hydra</em>) and other organisms that combine the imaging with an analysis pipeline were demonstrated to highlight the system’s utility. Beyond the applications demonstrated, the system can be used or modified for various imaging applications.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"18 ","pages":"Article e00533"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000270/pdfft?md5=55e0824a1f3787ceeb3013bbbcfb05fd&pid=1-s2.0-S2468067224000270-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Microscopes are essential for the biomechanical and hydrodynamical investigation of small aquatic organisms. We report a prototype of a do-it-yourself microscope that enables the visualization of organisms from two orthogonal imaging planes — top and side views. Compared to conventional imaging systems, this approach provides a comprehensive visualization strategy of organisms, which could have complex shapes and morphologies. The microscope was constructed by combining custom 3D-printed parts and off-the-shelf components. The system is designed for modularity and reconfigurability. Open-source design files and build instructions are provided in this report. Additionally, proof-of-use experiments (particularly with Hydra) and other organisms that combine the imaging with an analysis pipeline were demonstrated to highlight the system’s utility. Beyond the applications demonstrated, the system can be used or modified for various imaging applications.
显微镜对于小型水生生物的生物力学和流体力学研究至关重要。我们报告了一种自己动手制作的显微镜原型,它可以从两个正交成像平面--俯视图和侧视图--观察生物体。与传统成像系统相比,这种方法提供了一种全面的生物可视化策略,因为生物可能具有复杂的形状和形态。该显微镜由定制的 3D 打印部件和现成的组件组合而成。该系统采用模块化和可重新配置设计。本报告提供了开源设计文件和构建说明。此外,还演示了使用验证实验(特别是水螅)和其他将成像与分析管道相结合的生物体,以突出该系统的实用性。除了所演示的应用外,该系统还可用于或修改用于各种成像应用。
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.