A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yanan Liu;Hongliang Li;Jian-Ming Jin
{"title":"A Hybrid Electromagnetic Optimization Method Based on Physics-Informed Machine Learning","authors":"Yanan Liu;Hongliang Li;Jian-Ming Jin","doi":"10.1109/JMMCT.2024.3385451","DOIUrl":null,"url":null,"abstract":"In this article, we present an optimization method based on the hybridization of the genetic algorithm (GA) and gradient optimization (grad-opt) and facilitated by a physics-informed machine learning model. In the proposed method, the slow-but-global GA is used as a pre-screening tool to provide good initial values to the fast-but-local grad-opt. We introduce a robust metric to measure the goodness of the designs as starting points and use a set of control parameters to fine tune the optimization dynamics. We utilize the machine learning with analytic extension of eigenvalues (ML w/AEE) model to integrate the two pieces seamlessly and accelerate the optimization process by speeding up forward evaluation in GA and gradient calculation in grad-opt. We employ the divide-and-conquer strategy to further improve modeling efficiency and accelerate the design process and propose the use of a fusion module to allow for end-to-end gradient propagation. Two numerical examples are included to show the robustness and efficiency of the proposed method, compared with traditional approaches.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"157-165"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10493126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10493126/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present an optimization method based on the hybridization of the genetic algorithm (GA) and gradient optimization (grad-opt) and facilitated by a physics-informed machine learning model. In the proposed method, the slow-but-global GA is used as a pre-screening tool to provide good initial values to the fast-but-local grad-opt. We introduce a robust metric to measure the goodness of the designs as starting points and use a set of control parameters to fine tune the optimization dynamics. We utilize the machine learning with analytic extension of eigenvalues (ML w/AEE) model to integrate the two pieces seamlessly and accelerate the optimization process by speeding up forward evaluation in GA and gradient calculation in grad-opt. We employ the divide-and-conquer strategy to further improve modeling efficiency and accelerate the design process and propose the use of a fusion module to allow for end-to-end gradient propagation. Two numerical examples are included to show the robustness and efficiency of the proposed method, compared with traditional approaches.
基于物理信息机器学习的混合电磁优化方法
在本文中,我们提出了一种基于遗传算法(GA)和梯度优化(grad-opt)混合的优化方法,并通过物理信息机器学习模型加以促进。在所提出的方法中,缓慢但全局的遗传算法被用作预筛选工具,为快速但局部的梯度优化提供良好的初始值。我们引入了一个稳健的指标来衡量作为起点的设计的优劣,并使用一组控制参数来微调优化动态。我们利用带有特征值分析扩展的机器学习(ML w/AEE)模型将两部分无缝集成,并通过加速 GA 中的前向评估和 grad-opt 中的梯度计算来加速优化过程。我们采用分而治之的策略进一步提高建模效率,加快设计过程,并建议使用融合模块来实现端到端的梯度传播。我们还列举了两个数值示例,以说明与传统方法相比,所提方法的稳健性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信