Beauty is more than epidermis deep: How cell division and expansion sculpt the leaf spongy mesophyll

IF 8.3 2区 生物学 Q1 PLANT SCIENCES
Liyong Zhang , Chris Ambrose
{"title":"Beauty is more than epidermis deep: How cell division and expansion sculpt the leaf spongy mesophyll","authors":"Liyong Zhang ,&nbsp;Chris Ambrose","doi":"10.1016/j.pbi.2024.102542","DOIUrl":null,"url":null,"abstract":"<div><p>As the main location of photosynthesis, leaf mesophyll cells are one of the most abundant and essential cell types on earth. Forming the bulk of the internal tissues of the leaf, their size, shape, and patterns of interconnectivity define the internal structure and surface area of the leaf, which in turn determines the efficiency of light capture and carbon fixation. Understanding how these cellular traits are controlled and translated into tissue- and organ-scale traits, and how they influence photosynthetic performance will be key to our ability to improve crop plants in the face of a changing climate. In contrast to the extensive literature on the anatomical and physiological aspects of mesophyll function, our understanding of the cell-level morphogenetic processes underpinning mesophyll cell growth and differentiation is scant. In this review, we focus on how cell division, expansion, and separation are coordinated to create the intricate architecture of the spongy mesophyll.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000335/pdfft?md5=9603a5e189737fedc4c5a47fa4fc20ec&pid=1-s2.0-S1369526624000335-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000335","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As the main location of photosynthesis, leaf mesophyll cells are one of the most abundant and essential cell types on earth. Forming the bulk of the internal tissues of the leaf, their size, shape, and patterns of interconnectivity define the internal structure and surface area of the leaf, which in turn determines the efficiency of light capture and carbon fixation. Understanding how these cellular traits are controlled and translated into tissue- and organ-scale traits, and how they influence photosynthetic performance will be key to our ability to improve crop plants in the face of a changing climate. In contrast to the extensive literature on the anatomical and physiological aspects of mesophyll function, our understanding of the cell-level morphogenetic processes underpinning mesophyll cell growth and differentiation is scant. In this review, we focus on how cell division, expansion, and separation are coordinated to create the intricate architecture of the spongy mesophyll.

美不止于表皮:细胞分裂和扩张如何雕琢叶片海绵状中叶
作为光合作用的主要场所,叶肉细胞是地球上最丰富、最重要的细胞类型之一。叶肉细胞是叶片内部组织的主体,它们的大小、形状和相互连接模式决定了叶片的内部结构和表面积,进而决定了光捕获和碳固定的效率。了解这些细胞性状如何受控并转化为组织和器官尺度的性状,以及它们如何影响光合作用的性能,将是我们面对不断变化的气候改良作物植物的关键。与有关叶肉功能的解剖学和生理学方面的大量文献相比,我们对叶肉细胞生长和分化所依赖的细胞级形态发生过程的了解却很少。在这篇综述中,我们将重点关注细胞分裂、扩展和分离是如何协调进行的,从而形成海绵状叶肉的复杂结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信