Rupali Gupta, Ravindran Keppanan, Meirav Leibman-Markus, Sabina Matveev, Dalia Rav-David, Ran Shulhani, Yigal Elad, Dana Ment, Maya Bar
{"title":"Bacillus thuringiensis promotes systemic immunity in tomato, controlling pests and pathogens and promoting yield","authors":"Rupali Gupta, Ravindran Keppanan, Meirav Leibman-Markus, Sabina Matveev, Dalia Rav-David, Ran Shulhani, Yigal Elad, Dana Ment, Maya Bar","doi":"10.1007/s12571-024-01441-4","DOIUrl":null,"url":null,"abstract":"<div><p>Plant pathogens and pests pose an increasing threat to worldwide food security. To improve and strengthen food security under increasingly difficult environmental, economic, and geopolitical conditions, the prospect of using microbial biocontrol agents becomes increasingly desirable. One of the most studied, and commercially used, biopesticide microorganisms is the entomopathogenic, gram-positive, soil bacterium <i>Bacillus thuringiensis</i> (Bt). While Bt has been known for many years as an insecticidal microorganism and used extensively in agriculture, its possible anti-phytopathogen and plant growth-promoting activities have received comparatively limited attention thus far. Here, we examine the ability of Bt to promote systemic immunity in tomato plants. We investigate how Bt influences plant immunity and disease resistance against several fungal and bacterial plant pathogens, as well as several arthropod pests. In order to determine which component of Bt (i.e., Bt spores or pure crystals) is responsible for the observed effects on pathogens or pests, we dissected the different fractions present in a commercial preparation and assessed their effects on pest and pathogen control. As previously reported in the Bt literature, our results indicate that proteins produced by Bt are likely the primary acting components against pests. In the case of pathogens, however, it appears that both the Bt spores and proteins directly act against pathogens such as the fungus <i>Botrytis cinerea</i>. Bt Spores and produced proteins also both induce plant immunity. Understanding the different Bt mode of action mechanisms will help in developing cost-effective and safe plant protection strategies for enhancing food security. Taken together, our findings suggest that Bt could be used in broad-spectrum pest and disease management strategies. Pending validation in agricultural settings, Bt products on the market could have additional uses in sustainable pest management and plant growth promotion.</p></div>","PeriodicalId":567,"journal":{"name":"Food Security","volume":"16 3","pages":"675 - 690"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12571-024-01441-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Security","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12571-024-01441-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant pathogens and pests pose an increasing threat to worldwide food security. To improve and strengthen food security under increasingly difficult environmental, economic, and geopolitical conditions, the prospect of using microbial biocontrol agents becomes increasingly desirable. One of the most studied, and commercially used, biopesticide microorganisms is the entomopathogenic, gram-positive, soil bacterium Bacillus thuringiensis (Bt). While Bt has been known for many years as an insecticidal microorganism and used extensively in agriculture, its possible anti-phytopathogen and plant growth-promoting activities have received comparatively limited attention thus far. Here, we examine the ability of Bt to promote systemic immunity in tomato plants. We investigate how Bt influences plant immunity and disease resistance against several fungal and bacterial plant pathogens, as well as several arthropod pests. In order to determine which component of Bt (i.e., Bt spores or pure crystals) is responsible for the observed effects on pathogens or pests, we dissected the different fractions present in a commercial preparation and assessed their effects on pest and pathogen control. As previously reported in the Bt literature, our results indicate that proteins produced by Bt are likely the primary acting components against pests. In the case of pathogens, however, it appears that both the Bt spores and proteins directly act against pathogens such as the fungus Botrytis cinerea. Bt Spores and produced proteins also both induce plant immunity. Understanding the different Bt mode of action mechanisms will help in developing cost-effective and safe plant protection strategies for enhancing food security. Taken together, our findings suggest that Bt could be used in broad-spectrum pest and disease management strategies. Pending validation in agricultural settings, Bt products on the market could have additional uses in sustainable pest management and plant growth promotion.
期刊介绍:
Food Security is a wide audience, interdisciplinary, international journal dedicated to the procurement, access (economic and physical), and quality of food, in all its dimensions. Scales range from the individual to communities, and to the world food system. We strive to publish high-quality scientific articles, where quality includes, but is not limited to, the quality and clarity of text, and the validity of methods and approaches.
Food Security is the initiative of a distinguished international group of scientists from different disciplines who hold a deep concern for the challenge of global food security, together with a vision of the power of shared knowledge as a means of meeting that challenge. To address the challenge of global food security, the journal seeks to address the constraints - physical, biological and socio-economic - which not only limit food production but also the ability of people to access a healthy diet.
From this perspective, the journal covers the following areas:
Global food needs: the mismatch between population and the ability to provide adequate nutrition
Global food potential and global food production
Natural constraints to satisfying global food needs:
§ Climate, climate variability, and climate change
§ Desertification and flooding
§ Natural disasters
§ Soils, soil quality and threats to soils, edaphic and other abiotic constraints to production
§ Biotic constraints to production, pathogens, pests, and weeds in their effects on sustainable production
The sociological contexts of food production, access, quality, and consumption.
Nutrition, food quality and food safety.
Socio-political factors that impinge on the ability to satisfy global food needs:
§ Land, agricultural and food policy
§ International relations and trade
§ Access to food
§ Financial policy
§ Wars and ethnic unrest
Research policies and priorities to ensure food security in its various dimensions.