Effect of the Nature of a Heterogeneous Dopant on the Transport and Thermodynamic Properties of Composites Based on n-Methyl-n-Butylpiperidinium Tetrafluoroborate
{"title":"Effect of the Nature of a Heterogeneous Dopant on the Transport and Thermodynamic Properties of Composites Based on n-Methyl-n-Butylpiperidinium Tetrafluoroborate","authors":"A. S. Ulikhin, A. V. Izmodenova, N. F. Uvarov","doi":"10.1134/S1023193524010130","DOIUrl":null,"url":null,"abstract":"<p>Composite solid electrolytes based on <i>n</i>-methyl-<i>n</i>-butylpiperidinium tetrafluoroborate [(CH<sub>3</sub>)(C<sub>4</sub>H<sub>9</sub>)C<sub>5</sub>H<sub>10</sub>N]BF<sub>4</sub>–A (where A is γ-Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>) were synthesized, and their thermal and electrically conductive properties were studied. The conductivity of the (1 – <i>x</i>)[C<sub>10</sub>H<sub>22</sub>N]BF<sub>4</sub>–<i>x</i>Al<sub>2</sub>O<sub>3</sub> composites passes through a maximum at <i>x</i> ~ 0.9, reaching 4.6 × 10<sup>–4</sup> S/cm at 130°C for 0.1[C<sub>10</sub>H<sub>22</sub>N]BF<sub>4</sub>–0.9Al<sub>2</sub>O<sub>3</sub>. The absence of a thermal effect at the melting temperature of the ionic salt, showing high ionic conductivity, indicates that at <i>x</i> ≥ 0.9 <i>n</i>-methyl-<i>n</i>-butylpiperidinium tetrafluoroborate is in the amorphous state, and ion transport occurs along the ionic salt/oxide interface. In the case of the [C<sub>10</sub>H<sub>22</sub>N]BF<sub>4</sub>–SiO<sub>2</sub> composites, the effect of a heterogeneous dopant on the ion transport is less significant, and the conductivity is due to the ionic salt of the additive present in the pores.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 1","pages":"67 - 72"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1023193524010130","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Composite solid electrolytes based on n-methyl-n-butylpiperidinium tetrafluoroborate [(CH3)(C4H9)C5H10N]BF4–A (where A is γ-Al2O3, SiO2) were synthesized, and their thermal and electrically conductive properties were studied. The conductivity of the (1 – x)[C10H22N]BF4–xAl2O3 composites passes through a maximum at x ~ 0.9, reaching 4.6 × 10–4 S/cm at 130°C for 0.1[C10H22N]BF4–0.9Al2O3. The absence of a thermal effect at the melting temperature of the ionic salt, showing high ionic conductivity, indicates that at x ≥ 0.9 n-methyl-n-butylpiperidinium tetrafluoroborate is in the amorphous state, and ion transport occurs along the ionic salt/oxide interface. In the case of the [C10H22N]BF4–SiO2 composites, the effect of a heterogeneous dopant on the ion transport is less significant, and the conductivity is due to the ionic salt of the additive present in the pores.
期刊介绍:
Russian Journal of Electrochemistry is a journal that covers all aspects of research in modern electrochemistry. The journal welcomes submissions in English or Russian regardless of country and nationality of authors.