Exact Transport Coefficients from the Inelastic Rough Maxwell Model of a Granular Gas

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Andrés Santos, Gilberto M. Kremer
{"title":"Exact Transport Coefficients from the Inelastic Rough Maxwell Model of a Granular Gas","authors":"Andrés Santos,&nbsp;Gilberto M. Kremer","doi":"10.1007/s10955-024-03269-w","DOIUrl":null,"url":null,"abstract":"<div><p>Granular gases demand models capable of capturing their distinct characteristics. The widely employed inelastic hard-sphere model (IHSM) introduces complexities that are compounded when incorporating realistic features like surface roughness and rotational degrees of freedom, resulting in the more intricate inelastic rough hard-sphere model (IRHSM). This paper focuses on the inelastic rough Maxwell model (IRMM), presenting a more tractable alternative to the IRHSM and enabling exact solutions. Building on the foundation of the inelastic Maxwell model (IMM) applied to granular gases, the IRMM extends the mathematical representation to encompass surface roughness and rotational degrees of freedom. The primary objective is to provide exact expressions for the Navier–Stokes–Fourier transport coefficients within the IRMM, including the shear and bulk viscosities, the thermal and diffusive heat conductivities, and the cooling-rate transport coefficient. In contrast to earlier approximations in the IRHSM, our study unveils inherent couplings, such as shear viscosity to spin viscosity and heat conductivities to counterparts associated with a torque-vorticity vector. These exact findings provide valuable insights into refining the Sonine approximation applied to the IRHSM, contributing to a deeper understanding of the transport properties in granular gases with realistic features.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03269-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03269-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Granular gases demand models capable of capturing their distinct characteristics. The widely employed inelastic hard-sphere model (IHSM) introduces complexities that are compounded when incorporating realistic features like surface roughness and rotational degrees of freedom, resulting in the more intricate inelastic rough hard-sphere model (IRHSM). This paper focuses on the inelastic rough Maxwell model (IRMM), presenting a more tractable alternative to the IRHSM and enabling exact solutions. Building on the foundation of the inelastic Maxwell model (IMM) applied to granular gases, the IRMM extends the mathematical representation to encompass surface roughness and rotational degrees of freedom. The primary objective is to provide exact expressions for the Navier–Stokes–Fourier transport coefficients within the IRMM, including the shear and bulk viscosities, the thermal and diffusive heat conductivities, and the cooling-rate transport coefficient. In contrast to earlier approximations in the IRHSM, our study unveils inherent couplings, such as shear viscosity to spin viscosity and heat conductivities to counterparts associated with a torque-vorticity vector. These exact findings provide valuable insights into refining the Sonine approximation applied to the IRHSM, contributing to a deeper understanding of the transport properties in granular gases with realistic features.

Abstract Image

粒状气体非弹性粗糙麦克斯韦模型的精确传输系数
粒状气体需要能够捕捉其独特特征的模型。广泛使用的非弹性硬球模型(IHSM)带来了复杂性,而当加入表面粗糙度和旋转自由度等现实特征时,复杂性就更加突出,从而产生了更为复杂的非弹性粗糙硬球模型(IRHSM)。本文的重点是非弹性粗糙麦克斯韦模型(IRMM),它提出了比 IRHSM 更简便的替代方案,并实现了精确求解。IRMM 以应用于粒状气体的非弹性麦克斯韦模型 (IMM) 为基础,扩展了数学表示法,涵盖了表面粗糙度和旋转自由度。主要目的是在 IRMM 中提供纳维-斯托克斯-傅里叶传输系数的精确表达式,包括剪切粘度和体积粘度、热导率和扩散热导率以及冷却速率传输系数。与 IRHSM 早期的近似值不同,我们的研究揭示了固有的耦合关系,如剪切粘度与自旋粘度的耦合,以及热导率与扭矩-涡度矢量相关的耦合。这些确切的发现为完善应用于 IRHSM 的 Sonine 近似提供了宝贵的见解,有助于更深入地了解具有现实特征的粒状气体的输运特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信