Chun-Chin Hsu, Ya-Chen Hsu, Po-Chou Shih, Yong-Qi Yang, Fang-Chih Tien
{"title":"Steel ball surface inspection using modified DRAEM and machine vision","authors":"Chun-Chin Hsu, Ya-Chen Hsu, Po-Chou Shih, Yong-Qi Yang, Fang-Chih Tien","doi":"10.1007/s10845-024-02370-x","DOIUrl":null,"url":null,"abstract":"<p>Precision steel balls are among the most crucial components in the industry, widely used in various equipment related to bearings, such as CNC, automotive, medical, and machinery industries. Due to the reflective surface of steel balls, flaw inspection becomes a challenging task. This paper introduces an automatic optical inspection system that employs a modified DRAEM, a reconstruction-based anomaly detection network, for examining the surface of precision steel balls. We made three modifications to the DRAEM network (Zavrtanik, V., Kristan, M., & Skoca, D. (2021). DRAEM—a discriminatively trained reconstruction embedding for surface anomaly detection. http://arXiv.org/arXiv:2108.07610[cs.CV]), including adjusting the generation process of synthesized anomalies, adding a few skip connections from the encoder to the decoder, and incorporating an attention module to enhance the quality of reconstructed images and reduce misjudgments. Experimental results demonstrate a reduction in the model's underkill rate from 8.8% to 4.6% and the overkill rate from 1.5% to 0.4%. This indicates that the proposed methods addressed the issues of reconstruction distortion and the inability to detect small and inconspicuous defects. The proposed system has been successfully implemented in a case study company, showcasing significant advantages, particularly in scenarios involving new production lines or a lack of sufficient defective samples for collection.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"176 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02370-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Precision steel balls are among the most crucial components in the industry, widely used in various equipment related to bearings, such as CNC, automotive, medical, and machinery industries. Due to the reflective surface of steel balls, flaw inspection becomes a challenging task. This paper introduces an automatic optical inspection system that employs a modified DRAEM, a reconstruction-based anomaly detection network, for examining the surface of precision steel balls. We made three modifications to the DRAEM network (Zavrtanik, V., Kristan, M., & Skoca, D. (2021). DRAEM—a discriminatively trained reconstruction embedding for surface anomaly detection. http://arXiv.org/arXiv:2108.07610[cs.CV]), including adjusting the generation process of synthesized anomalies, adding a few skip connections from the encoder to the decoder, and incorporating an attention module to enhance the quality of reconstructed images and reduce misjudgments. Experimental results demonstrate a reduction in the model's underkill rate from 8.8% to 4.6% and the overkill rate from 1.5% to 0.4%. This indicates that the proposed methods addressed the issues of reconstruction distortion and the inability to detect small and inconspicuous defects. The proposed system has been successfully implemented in a case study company, showcasing significant advantages, particularly in scenarios involving new production lines or a lack of sufficient defective samples for collection.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.