Unraveling the interplay between demography and landscape features in shaping connectivity and diversity: Insights from the leopard cat on a subtropical island

IF 4 2区 环境科学与生态学 Q1 ECOLOGY
Pei-Wei Sun, Chen Hsiao, Kurtis Jai-Chyi Pei, Yu-Hsiu Lin, Mei-Ting Chen, Po-Jen Chiang, Ling Wang, Dau-Jye Lu, Pei-Chun Liao, Yu-Ten Ju
{"title":"Unraveling the interplay between demography and landscape features in shaping connectivity and diversity: Insights from the leopard cat on a subtropical island","authors":"Pei-Wei Sun, Chen Hsiao, Kurtis Jai-Chyi Pei, Yu-Hsiu Lin, Mei-Ting Chen, Po-Jen Chiang, Ling Wang, Dau-Jye Lu, Pei-Chun Liao, Yu-Ten Ju","doi":"10.1007/s10980-024-01894-0","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Context</h3><p>Elucidating how demography and contemporary landscape features regulate functional connectivity is crucial to implementing effective conservation strategies. We assessed the impacts of landscape features on the genetic variation of a locally endangered carnivore, the leopard cat (<i>Prionailurus bengalensis</i>) in Taiwan.</p><h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>We aim to evaluate the association between genetic structure and landscape features. We further predicted the changes in genetic diversity and suitable habitats in the future.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We genotyped 184 leopard cats in western Taiwan using 12 nuclear microsatellites and a mitochondrial marker. We applied a landscape optimization procedure with two genetic distances to identify major genetic barriers and employed ecological niche modeling to predict the future distribution of the leopard cat.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Bayesian demographic inferences revealed a dramatic population decline for all leopard cat populations in Taiwan. Genetic clustering and resistance surface modeling supported that the population connectivity was influenced by highways and high elevation. Niche modeling indicated low temperature was one of the primary factors limiting the occurrence of leopard cats that may inhibit their movement in high elevations. We predicted the suitable habitats of leopard cats would shrink northward and towards higher altitudes with rugged topography in response to global warming.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our study provided genetic evidence that leopard cats in Taiwan had undergone a dramatic population decline that may be associated with anthropogenic impacts. We also inferred the anthropogenic linear feature compromised the connectivity and persistence of leopard cats in human-mediated landscapes. Our finding serves as a model for landscape genetic studies of island carnivores in subtropical regions.</p>","PeriodicalId":54745,"journal":{"name":"Landscape Ecology","volume":"37 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landscape Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10980-024-01894-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

Elucidating how demography and contemporary landscape features regulate functional connectivity is crucial to implementing effective conservation strategies. We assessed the impacts of landscape features on the genetic variation of a locally endangered carnivore, the leopard cat (Prionailurus bengalensis) in Taiwan.

Objectives

We aim to evaluate the association between genetic structure and landscape features. We further predicted the changes in genetic diversity and suitable habitats in the future.

Methods

We genotyped 184 leopard cats in western Taiwan using 12 nuclear microsatellites and a mitochondrial marker. We applied a landscape optimization procedure with two genetic distances to identify major genetic barriers and employed ecological niche modeling to predict the future distribution of the leopard cat.

Results

Bayesian demographic inferences revealed a dramatic population decline for all leopard cat populations in Taiwan. Genetic clustering and resistance surface modeling supported that the population connectivity was influenced by highways and high elevation. Niche modeling indicated low temperature was one of the primary factors limiting the occurrence of leopard cats that may inhibit their movement in high elevations. We predicted the suitable habitats of leopard cats would shrink northward and towards higher altitudes with rugged topography in response to global warming.

Conclusions

Our study provided genetic evidence that leopard cats in Taiwan had undergone a dramatic population decline that may be associated with anthropogenic impacts. We also inferred the anthropogenic linear feature compromised the connectivity and persistence of leopard cats in human-mediated landscapes. Our finding serves as a model for landscape genetic studies of island carnivores in subtropical regions.

Abstract Image

揭示人口与地貌特征在塑造连通性和多样性方面的相互作用:亚热带岛屿豹猫的启示
背景阐明人口和当代景观特征如何调节功能连接性对于实施有效的保护策略至关重要。我们评估了景观特征对台湾濒危食肉动物豹猫(Prionailurus bengalensis)遗传变异的影响。方法我们使用 12 个核微卫星和一个线粒体标记对台湾西部的 184 只豹猫进行了基因分型。结果贝叶斯人口学推断显示,台湾所有豹猫种群数量急剧下降。遗传聚类和阻力面建模表明,种群的连通性受到高速公路和高海拔的影响。利基模型表明,低温是限制豹猫出现的主要因素之一,它可能会抑制豹猫在高海拔地区的移动。我们预测,随着全球变暖,豹猫的适宜栖息地将向北缩减,并向地形崎岖的高海拔地区迁移。结论我们的研究提供了遗传学证据,证明台湾豹猫的种群数量急剧下降可能与人为影响有关。我们还推断,人为的线性特征损害了豹猫在人为景观中的连通性和持久性。我们的发现可作为亚热带地区岛屿食肉动物景观遗传研究的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Landscape Ecology
Landscape Ecology 环境科学-地球科学综合
CiteScore
8.30
自引率
7.70%
发文量
164
审稿时长
8-16 weeks
期刊介绍: Landscape Ecology is the flagship journal of a well-established and rapidly developing interdisciplinary science that focuses explicitly on the ecological understanding of spatial heterogeneity. Landscape Ecology draws together expertise from both biophysical and socioeconomic sciences to explore basic and applied research questions concerning the ecology, conservation, management, design/planning, and sustainability of landscapes as coupled human-environment systems. Landscape ecology studies are characterized by spatially explicit methods in which spatial attributes and arrangements of landscape elements are directly analyzed and related to ecological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信