Raghawendra P. S. Sisodia, Marcell Gáspár, Sumit Ghosh, Erika Hodúlová
{"title":"Investigation of the effects of beam oscillations in electron beam–welded S1100M TMCP steel","authors":"Raghawendra P. S. Sisodia, Marcell Gáspár, Sumit Ghosh, Erika Hodúlová","doi":"10.1007/s40194-024-01765-x","DOIUrl":null,"url":null,"abstract":"<div><p>The development of thermomechanically controlled processed (TMCP) high-strength steel (HSS) has significantly contributed to designing and developing the intricate structural components. It has broader applications in the cranes and lifting process industry (base frame, crane jibs, and crane columns), trailers, agricultural and forestry machinery, earth-moving equipment, etc. However, the development of new-grade steels with higher tensile strength led to higher requirements for welded joints, and the associated weldability issues have inspired detailed studies on electron beam welding (EBW) with different beam oscillations. Beam oscillation application with EBW processes improves the welding efficiency, weld quality, weld geometry, keyhole, etc., affecting the welded joints mechanical and microstructural properties. Thus, the present study investigates the impact and comparison of various beam oscillations on the microstructural and mechanical properties of EB-welded S1100M steel. The influence of welding parameters on the microstructure of welded joints was analyzed using a scanning electron microscope (SEM) and electron backscattered diffraction (EBSD). The analysis focused on evaluation of grain sizes, morphologies, distributions, and crystallographic orientations of different phase constituents in fusion zone (FZ) and heat-affected zone (HAZ). The mechanical properties were analyzed using hardness, tensile, and Charpy V-notch impact tests. The texture in the FZ is typically random, while the HAZ typically exhibits a strong rolling texture. In general, the cooling rate in EBW is very fast, possibly resulting in a fine-grained structure and reduced formation of coarse second-phase particles in the weld zone. The elliptical beam oscillation showed the highest hardness in HAZ 450 HV10. Elliptical beam oscillation slightly improves the welded joint’s tensile strength, and the impact test showed mixed fracture behavior.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 6","pages":"1525 - 1537"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40194-024-01765-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01765-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The development of thermomechanically controlled processed (TMCP) high-strength steel (HSS) has significantly contributed to designing and developing the intricate structural components. It has broader applications in the cranes and lifting process industry (base frame, crane jibs, and crane columns), trailers, agricultural and forestry machinery, earth-moving equipment, etc. However, the development of new-grade steels with higher tensile strength led to higher requirements for welded joints, and the associated weldability issues have inspired detailed studies on electron beam welding (EBW) with different beam oscillations. Beam oscillation application with EBW processes improves the welding efficiency, weld quality, weld geometry, keyhole, etc., affecting the welded joints mechanical and microstructural properties. Thus, the present study investigates the impact and comparison of various beam oscillations on the microstructural and mechanical properties of EB-welded S1100M steel. The influence of welding parameters on the microstructure of welded joints was analyzed using a scanning electron microscope (SEM) and electron backscattered diffraction (EBSD). The analysis focused on evaluation of grain sizes, morphologies, distributions, and crystallographic orientations of different phase constituents in fusion zone (FZ) and heat-affected zone (HAZ). The mechanical properties were analyzed using hardness, tensile, and Charpy V-notch impact tests. The texture in the FZ is typically random, while the HAZ typically exhibits a strong rolling texture. In general, the cooling rate in EBW is very fast, possibly resulting in a fine-grained structure and reduced formation of coarse second-phase particles in the weld zone. The elliptical beam oscillation showed the highest hardness in HAZ 450 HV10. Elliptical beam oscillation slightly improves the welded joint’s tensile strength, and the impact test showed mixed fracture behavior.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.