A Geometric Theory for Binary Classification of Finite Datasets by DNNs with Relu Activations

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiao-Song Yang
{"title":"A Geometric Theory for Binary Classification of Finite Datasets by DNNs with Relu Activations","authors":"Xiao-Song Yang","doi":"10.1007/s11063-024-11612-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we investigate deep neural networks for binary classification of datasets from geometric perspective in order to understand the working mechanism of deep neural networks. First, we establish a geometrical result on injectivity of finite set under a projection from Euclidean space to the real line. Then by introducing notions of alternative points and alternative number, we propose an approach to design DNNs for binary classification of finite labeled points on the real line, thus proving existence of binary classification neural net with its hidden layers of width two and the number of hidden layers not larger than the cardinality of the finite labelled set. We also demonstrate geometrically how the dataset is transformed across every hidden layers in a narrow DNN setting for binary classification task.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"12 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11612-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate deep neural networks for binary classification of datasets from geometric perspective in order to understand the working mechanism of deep neural networks. First, we establish a geometrical result on injectivity of finite set under a projection from Euclidean space to the real line. Then by introducing notions of alternative points and alternative number, we propose an approach to design DNNs for binary classification of finite labeled points on the real line, thus proving existence of binary classification neural net with its hidden layers of width two and the number of hidden layers not larger than the cardinality of the finite labelled set. We also demonstrate geometrically how the dataset is transformed across every hidden layers in a narrow DNN setting for binary classification task.

Abstract Image

采用 Relu 激活的 DNN 对有限数据集进行二元分类的几何理论
本文从几何学的角度研究深度神经网络对数据集的二元分类,以了解深度神经网络的工作机制。首先,我们建立了有限集在欧几里得空间到实线的投影下的注入性的几何结果。然后,通过引入替代点和替代数的概念,我们提出了一种设计二元分类实线上有限标注点的 DNN 的方法,从而证明了二元分类神经网络的存在,其隐藏层的宽度为 2,且隐藏层的数量不大于有限标注集的万有引力。我们还从几何角度演示了在二元分类任务的窄 DNN 设置中,数据集如何在每个隐藏层之间进行转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信