{"title":"Production, purification, and determination of the biochemical properties of β-glucosidase in Trichoderma koningii via solid substrate fermentation","authors":"Selma Çelen Yücetürk, Ayşe Dilek Azaz","doi":"10.1515/znc-2024-0026","DOIUrl":null,"url":null,"abstract":"The β-glucosidase enzyme was obtained from <jats:italic>Trichoderma koningii</jats:italic> Oudem. NRRL 54330 under optimal conditions by solid substrate fermentation (SSF) using corn cobs as substrate. The enzyme was purified by two-step procedures, ammonium sulphate precipitation and cefarose-4B-<jats:sc>l</jats:sc>-tyrosine-1-naphthylamine hydrophobic interaction chromatography, followed by biochemical and kinetic characterisation. The β-glucosidase was obtained from <jats:italic>T. koningii</jats:italic> using ground corn cob as substrate and Na<jats:sub>2</jats:sub>HPO<jats:sub>4</jats:sub>, pH 9, as humidification medium. The optimum conditions for enzyme production by SSF were 30 °C and 6 days. The purification efficiency of the obtained β-glucosidase was calculated to be 22.56-fold with a yield of 73.51 %. In the determination of β-glucosidase activity, <jats:italic>p</jats:italic>-nitrophenyl-β-<jats:sc>d</jats:sc>-glucopyranoside (<jats:italic>p</jats:italic>NPG) substrate was used, and the optimum pH and temperature values at which β-glucosidase showed high activity were determined to be pH 3.0 and 75 °C. The purity of the enzyme and the presence/number of subunits were checked using two different electrophoretic methods, SDS-PAGE and NATIVE-PAGE electrophoretic methods. The <jats:italic>K</jats:italic> <jats:sub>m</jats:sub> and <jats:italic>V</jats:italic> <jats:sub>max</jats:sub> values of the purified enzyme were determined to be 0.16 mM and 2000 EU respectively. It was also found that <jats:sc>d</jats:sc>-(+)-glucose and δ-gluconolactone inhibitors exhibited competitive inhibition of β-glucosidase in the presence of <jats:italic>p</jats:italic>NPG.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znc-2024-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The β-glucosidase enzyme was obtained from Trichoderma koningii Oudem. NRRL 54330 under optimal conditions by solid substrate fermentation (SSF) using corn cobs as substrate. The enzyme was purified by two-step procedures, ammonium sulphate precipitation and cefarose-4B-l-tyrosine-1-naphthylamine hydrophobic interaction chromatography, followed by biochemical and kinetic characterisation. The β-glucosidase was obtained from T. koningii using ground corn cob as substrate and Na2HPO4, pH 9, as humidification medium. The optimum conditions for enzyme production by SSF were 30 °C and 6 days. The purification efficiency of the obtained β-glucosidase was calculated to be 22.56-fold with a yield of 73.51 %. In the determination of β-glucosidase activity, p-nitrophenyl-β-d-glucopyranoside (pNPG) substrate was used, and the optimum pH and temperature values at which β-glucosidase showed high activity were determined to be pH 3.0 and 75 °C. The purity of the enzyme and the presence/number of subunits were checked using two different electrophoretic methods, SDS-PAGE and NATIVE-PAGE electrophoretic methods. The Km and Vmax values of the purified enzyme were determined to be 0.16 mM and 2000 EU respectively. It was also found that d-(+)-glucose and δ-gluconolactone inhibitors exhibited competitive inhibition of β-glucosidase in the presence of pNPG.