Fixed energy solutions to the Euler-Lagrange equations of an indefinite Lagrangian with affine Noether charge

IF 1 3区 数学 Q1 MATHEMATICS
Erasmo Caponio, Dario Corona, Roberto Giambò, Paolo Piccione
{"title":"Fixed energy solutions to the Euler-Lagrange equations of an indefinite Lagrangian with affine Noether charge","authors":"Erasmo Caponio,&nbsp;Dario Corona,&nbsp;Roberto Giambò,&nbsp;Paolo Piccione","doi":"10.1007/s10231-024-01424-4","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an autonomous, indefinite Lagrangian <i>L</i> admitting an infinitesimal symmetry <i>K</i> whose associated Noether charge is linear in each tangent space. Our focus lies in investigating solutions to the Euler-Lagrange equations having fixed energy and that connect a given point <i>p</i> to a flow line <span>\\(\\gamma =\\gamma (t)\\)</span> of <i>K</i> that does not cross <i>p</i>. By utilizing the invariance of <i>L</i> under the flow of <i>K</i>, we simplify the problem into a two-point boundary problem. Consequently, we derive an equation that involves the differential of the “arrival time” <i>t</i>, seen as a functional on the infinite dimensional manifold of connecting paths satisfying the semi-holonomic constraint defined by the Noether charge. When <i>L</i> is positively homogeneous of degree 2 in the velocities, the resulting equation establishes a variational principle that extends the Fermat’s principle in a stationary spacetime. Furthermore, we also analyze the scenario where the Noether charge is affine.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-024-01424-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01424-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an autonomous, indefinite Lagrangian L admitting an infinitesimal symmetry K whose associated Noether charge is linear in each tangent space. Our focus lies in investigating solutions to the Euler-Lagrange equations having fixed energy and that connect a given point p to a flow line \(\gamma =\gamma (t)\) of K that does not cross p. By utilizing the invariance of L under the flow of K, we simplify the problem into a two-point boundary problem. Consequently, we derive an equation that involves the differential of the “arrival time” t, seen as a functional on the infinite dimensional manifold of connecting paths satisfying the semi-holonomic constraint defined by the Noether charge. When L is positively homogeneous of degree 2 in the velocities, the resulting equation establishes a variational principle that extends the Fermat’s principle in a stationary spacetime. Furthermore, we also analyze the scenario where the Noether charge is affine.

带有仿射诺特电荷的不定拉格朗日欧拉-拉格朗日方程的固定能量解
我们考虑一个自治的、不确定的拉格朗日 L,它允许一个无限小的对称 K,其相关的诺特电荷在每个切线空间都是线性的。我们的重点在于研究具有固定能量的欧拉-拉格朗日方程的解,这些解将给定点 p 与 K 的流线 \(\gamma =\gamma (t)\) 连接起来,而流线不穿过 p。因此,我们导出了一个涉及 "到达时间 "t 的微分方程,该微分方程被视为满足诺特电荷定义的半自主约束的连接路径的无限维流形上的一个函数。当 L 在速度上是 2 度正均质时,所得到的方程建立了一个变分原理,它扩展了静止时空中的费马原理。此外,我们还分析了诺特电荷是仿射的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信