Cycle-factors in oriented graphs

Pub Date : 2024-04-25 DOI:10.1002/jgt.23105
Zhilan Wang, Jin Yan, Jie Zhang
{"title":"Cycle-factors in oriented graphs","authors":"Zhilan Wang,&nbsp;Jin Yan,&nbsp;Jie Zhang","doi":"10.1002/jgt.23105","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> be a positive integer. A <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-cycle-factor of an oriented graph is a set of disjoint cycles of length <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> that covers all vertices of the graph. In this paper, we prove that there exists a positive constant <span></span><math>\n \n <mrow>\n <mi>c</mi>\n </mrow></math> such that for <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> sufficiently large, any oriented graph on <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> vertices with both minimum out-degree and minimum in-degree at least <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n \n <mo>−</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow></math> contains a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-cycle-factor for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow></math>. Additionally, under the same hypotheses, we also show that for any sequence <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>n</mi>\n \n <mi>t</mi>\n </msub>\n </mrow></math> with <span></span><math>\n \n <mrow>\n <msubsup>\n <mo>∑</mo>\n \n <mrow>\n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>t</mi>\n </msubsup>\n \n <msub>\n <mi>n</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>=</mo>\n \n <mi>n</mi>\n </mrow></math> and the number of the <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mi>i</mi>\n </msub>\n </mrow></math> equal to 3 is <span></span><math>\n \n <mrow>\n <mi>α</mi>\n \n <mi>n</mi>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <mi>α</mi>\n </mrow></math> is any real number with <span></span><math>\n \n <mrow>\n <mn>0</mn>\n \n <mo>&lt;</mo>\n \n <mi>α</mi>\n \n <mo>&lt;</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mn>3</mn>\n </mrow></math>, the oriented graph contains <span></span><math>\n \n <mrow>\n <mi>t</mi>\n </mrow></math> disjoint cycles of lengths <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>n</mi>\n \n <mi>t</mi>\n </msub>\n </mrow></math>. This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let k be a positive integer. A k -cycle-factor of an oriented graph is a set of disjoint cycles of length k that covers all vertices of the graph. In this paper, we prove that there exists a positive constant c such that for n sufficiently large, any oriented graph on n vertices with both minimum out-degree and minimum in-degree at least ( 1 2 c ) n contains a k -cycle-factor for any k 4 . Additionally, under the same hypotheses, we also show that for any sequence n 1 , , n t with i = 1 t n i = n and the number of the n i equal to 3 is α n , where α is any real number with 0 < α < 1 3 , the oriented graph contains t disjoint cycles of lengths n 1 , , n t . This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.

分享
查看原文
定向图中的循环因子
设为正整数。有向图的循环因子是指覆盖图中所有顶点的长度不相交循环的集合。在本文中,我们证明了存在一个正常数,使得在足够大的情况下,对于任意......的顶点,任何同时具有最小出度和最小入度的有向图都至少包含一个-循环因子。此外,在同样的假设下,我们还证明,对于任意序列,且等于 3 的数为 ,其中为任意实数,且为 ,定向图包含长度为 的不相交循环。这个结论在某种意义上是最好的,并且完善了基瓦什和苏达科夫的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信