{"title":"Cycle-factors in oriented graphs","authors":"Zhilan Wang, Jin Yan, Jie Zhang","doi":"10.1002/jgt.23105","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> be a positive integer. A <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-cycle-factor of an oriented graph is a set of disjoint cycles of length <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> that covers all vertices of the graph. In this paper, we prove that there exists a positive constant <span></span><math>\n \n <mrow>\n <mi>c</mi>\n </mrow></math> such that for <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> sufficiently large, any oriented graph on <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math> vertices with both minimum out-degree and minimum in-degree at least <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n \n <mo>−</mo>\n \n <mi>c</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mi>n</mi>\n </mrow></math> contains a <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-cycle-factor for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow></math>. Additionally, under the same hypotheses, we also show that for any sequence <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>n</mi>\n \n <mi>t</mi>\n </msub>\n </mrow></math> with <span></span><math>\n \n <mrow>\n <msubsup>\n <mo>∑</mo>\n \n <mrow>\n <mi>i</mi>\n \n <mo>=</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mi>t</mi>\n </msubsup>\n \n <msub>\n <mi>n</mi>\n \n <mi>i</mi>\n </msub>\n \n <mo>=</mo>\n \n <mi>n</mi>\n </mrow></math> and the number of the <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mi>i</mi>\n </msub>\n </mrow></math> equal to 3 is <span></span><math>\n \n <mrow>\n <mi>α</mi>\n \n <mi>n</mi>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <mi>α</mi>\n </mrow></math> is any real number with <span></span><math>\n \n <mrow>\n <mn>0</mn>\n \n <mo><</mo>\n \n <mi>α</mi>\n \n <mo><</mo>\n \n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mn>3</mn>\n </mrow></math>, the oriented graph contains <span></span><math>\n \n <mrow>\n <mi>t</mi>\n </mrow></math> disjoint cycles of lengths <span></span><math>\n \n <mrow>\n <msub>\n <mi>n</mi>\n \n <mn>1</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>n</mi>\n \n <mi>t</mi>\n </msub>\n </mrow></math>. This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"947-975"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a positive integer. A -cycle-factor of an oriented graph is a set of disjoint cycles of length that covers all vertices of the graph. In this paper, we prove that there exists a positive constant such that for sufficiently large, any oriented graph on vertices with both minimum out-degree and minimum in-degree at least contains a -cycle-factor for any . Additionally, under the same hypotheses, we also show that for any sequence with and the number of the equal to 3 is , where is any real number with , the oriented graph contains disjoint cycles of lengths . This conclusion is the best possible in some sense and refines a result of Keevash and Sudakov.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .