Decellularized kidney capsule as a three-dimensional scaffold for tissue regeneration

IF 1.4 4区 医学 Q4 CELL BIOLOGY
Mohammad Rasool Khazaei, Rawa Ibrahim, Rayan Faris, Azam Bozorgi, Mozafar Khazaei, Leila Rezakhani
{"title":"Decellularized kidney capsule as a three-dimensional scaffold for tissue regeneration","authors":"Mohammad Rasool Khazaei, Rawa Ibrahim, Rayan Faris, Azam Bozorgi, Mozafar Khazaei, Leila Rezakhani","doi":"10.1007/s10561-024-10136-1","DOIUrl":null,"url":null,"abstract":"<p>Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Banking","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10561-024-10136-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications.

Abstract Image

脱细胞肾囊作为组织再生的三维支架
使用为组织工程设计的支架,组织再生被认为具有相当大的前景。虽然用于组织工程的聚合物基支架已得到广泛应用和快速发展,但其模拟体内环境、克服免疫原性以及具有可比机械或生化特性的能力限制了其修复能力。幸运的是,由于脱细胞组织制成的细胞外基质(ECM)支架的发展,有一种令人信服的方法可以解决这些难题。我们在研究中使用了脱细胞羊肾囊组织的 ECM。使用 Triton-X100 和十二烷基硫酸钠(SDS)等去垢剂对这些支架进行脱细胞处理。对 DNA 含量、组织学、力学性能分析、衰减全反射傅立叶变换红外光谱(ATR-FTIR)、生物相容性、血液相容性和扫描电子显微镜(SEM)成像进行了测量。结果表明,ECM 的三维(3D)结构基本保持完好。上述支架具有多种亲水性能。在 SDS 为 0.5% 的方法中,生物相容性和血液相容性最好。采用 0.5% SDS 的脱细胞支架效果最佳。因此,可以建议将其作为一种具有类似天然组织的 ECM 的支架,用于组织工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Tissue Banking
Cell and Tissue Banking CELL BIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
3.10
自引率
13.30%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Cell and Tissue Banking provides a forum for disseminating information to scientists and clinicians involved in the banking and transplantation of cells and tissues. Cell and Tissue Banking is an international, peer-reviewed journal that publishes original papers in the following areas: basic research concerning general aspects of tissue banking such as quality assurance and control of banked cells/tissues, effects of preservation and sterilisation methods on cells/tissues, biotechnology, etc.; clinical applications of banked cells/tissues; standards of practice in procurement, processing, storage and distribution of cells/tissues; ethical issues; medico-legal issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信