{"title":"Emergence of integrated biosensing-enabled digital healthcare devices","authors":"Anshuman Mishra, Pravin Kumar Singh, Nidhi Chauhan, Souradeep Roy, Ayushi Tiwari, Shaivya Gupta, Aanshi Tiwari, Santanu Patra, Trupti R. Das, Prashant Mishra, Ahmad Soltani Nejad, Yogesh Kumar Shukla, Utkarsh Jain and Ashutosh Tiwari","doi":"10.1039/D4SD00017J","DOIUrl":null,"url":null,"abstract":"<p >Digital biosensors facilitate real-time, remote, precise disease detection and biochemical analysis. Recent trends in biosensing methods have focused on miniaturization, automation, and multiplexing. The miniaturization of biosensors has led to the development of portable, flexible, and wearable devices that can be used for point-of-care diagnostics and continuous health monitoring. Furthermore, digital automation has enabled the high-throughput screening of samples, reducing the time and cost of analysis, while integrated multiplexing allows for the simultaneous detection of multiple analytes, increasing the efficiency and accuracy of analysis. This article examines recent scientific advances in developing miniaturized biosensing procedures for digital healthcare. Advancements in digital devices have also contributed to the development of integrated biosensing. The use of smartphones, smartwatches, and other digital devices as readout platforms for biosensors has made biosensing more accessible and user-friendly. The development of artificial intelligence and machine learning algorithms has allowed for the interpretation and analysis of complex biosensor data. This review compares biosensing with current state-of-the-art diagnostic technology. After incorporating biosensors with artificial intelligence in an internet of things platform, they will have enormous potential and market value in the future for personalized healthcare. Based on various device performances and impacts, sensing methods, designs, compatibilities, functionalities, technology integrations, and developments are systematically discussed in this article. The primary objective of this review was to present a comprehensive discussion from the point of view of both technological advancements and translational wisdom. It is essential to have intelligent point-of-care devices with digital technologies for real-time healthcare management. The vision of the future healthcare industry encompasses a range of biosensing methods that offer a glimpse into new possibilities for the market.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 5","pages":" 718-744"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00017j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00017j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Digital biosensors facilitate real-time, remote, precise disease detection and biochemical analysis. Recent trends in biosensing methods have focused on miniaturization, automation, and multiplexing. The miniaturization of biosensors has led to the development of portable, flexible, and wearable devices that can be used for point-of-care diagnostics and continuous health monitoring. Furthermore, digital automation has enabled the high-throughput screening of samples, reducing the time and cost of analysis, while integrated multiplexing allows for the simultaneous detection of multiple analytes, increasing the efficiency and accuracy of analysis. This article examines recent scientific advances in developing miniaturized biosensing procedures for digital healthcare. Advancements in digital devices have also contributed to the development of integrated biosensing. The use of smartphones, smartwatches, and other digital devices as readout platforms for biosensors has made biosensing more accessible and user-friendly. The development of artificial intelligence and machine learning algorithms has allowed for the interpretation and analysis of complex biosensor data. This review compares biosensing with current state-of-the-art diagnostic technology. After incorporating biosensors with artificial intelligence in an internet of things platform, they will have enormous potential and market value in the future for personalized healthcare. Based on various device performances and impacts, sensing methods, designs, compatibilities, functionalities, technology integrations, and developments are systematically discussed in this article. The primary objective of this review was to present a comprehensive discussion from the point of view of both technological advancements and translational wisdom. It is essential to have intelligent point-of-care devices with digital technologies for real-time healthcare management. The vision of the future healthcare industry encompasses a range of biosensing methods that offer a glimpse into new possibilities for the market.