VAULT: vault accuracy using deep learning technology: new image-based artificial intelligence model for predicting implantable collamer lens postoperative vault

Taj Nasser, Matthew Hirabayashi, Gurpal Virdi, Andrew Abramson, Gregory Parkhurst
{"title":"VAULT: vault accuracy using deep learning technology: new image-based artificial intelligence model for predicting implantable collamer lens postoperative vault","authors":"Taj Nasser, Matthew Hirabayashi, Gurpal Virdi, Andrew Abramson, Gregory Parkhurst","doi":"10.1097/j.jcrs.0000000000001386","DOIUrl":null,"url":null,"abstract":"Purpose: To develop an accurate deep learning model to predict postoperative vault of phakic implantable collamer lenses (ICLs). Setting: Parkhurst NuVision LASIK Eye Surgery, San Antonio, Texas. Design: Retrospective machine learning study. Methods: 437 eyes of 221 consecutive patients who underwent ICL implantation were included. A neural network was trained on preoperative very high–frequency digital ultrasound images, patient demographics, and postoperative vault. Results: 3059 images from 437 eyes of 221 patients were used to train the algorithm on individual ICL sizes. The 13.7 mm size was excluded because of insufficient data. A mean absolute error of 66.3 μm, 103 μm, and 91.8 μm were achieved with 100%, 99.0%, and 96.6% of predictions within 500 μm for the 12.1 mm, 12.6 mm, and 13.2 mm sizes, respectively. Conclusions: This deep learning model achieved a high level of accuracy of predicting postoperative ICL vault with the overwhelming majority of predictions successfully within a clinically acceptable margin of vault.","PeriodicalId":15233,"journal":{"name":"Journal of Cataract & Refractive Surgery","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cataract & Refractive Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/j.jcrs.0000000000001386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop an accurate deep learning model to predict postoperative vault of phakic implantable collamer lenses (ICLs). Setting: Parkhurst NuVision LASIK Eye Surgery, San Antonio, Texas. Design: Retrospective machine learning study. Methods: 437 eyes of 221 consecutive patients who underwent ICL implantation were included. A neural network was trained on preoperative very high–frequency digital ultrasound images, patient demographics, and postoperative vault. Results: 3059 images from 437 eyes of 221 patients were used to train the algorithm on individual ICL sizes. The 13.7 mm size was excluded because of insufficient data. A mean absolute error of 66.3 μm, 103 μm, and 91.8 μm were achieved with 100%, 99.0%, and 96.6% of predictions within 500 μm for the 12.1 mm, 12.6 mm, and 13.2 mm sizes, respectively. Conclusions: This deep learning model achieved a high level of accuracy of predicting postoperative ICL vault with the overwhelming majority of predictions successfully within a clinically acceptable margin of vault.
VAULT:利用深度学习技术实现拱顶精确度:基于图像的新型人工智能模型,用于预测植入式准分子透镜术后拱顶
目的:开发一种准确的深度学习模型,用于预测隐形植入式准分子激光透镜(ICL)的术后穹窿。环境:德克萨斯州圣安东尼奥帕克赫斯特 NuVision LASIK 眼科手术中心。设计:回顾性机器学习研究。方法:纳入连续接受 ICL 植入术的 221 名患者的 437 只眼睛。根据术前的高频数字超声图像、患者人口统计学特征和术后穹隆对神经网络进行训练。结果来自 221 名患者 437 只眼睛的 3059 张图像被用于对不同尺寸的 ICL 进行算法训练。由于数据不足,13.7 毫米的尺寸被排除在外。12.1 毫米、12.6 毫米和 13.2 毫米尺寸的平均绝对误差分别为 66.3 μm、103 μm 和 91.8 μm,500 μm 以内的预测率分别为 100%、99.0% 和 96.6%。结论该深度学习模型在预测术后 ICL 穹隆方面达到了很高的准确度,绝大多数预测结果都在临床可接受的穹隆范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信