A novel non-adiabatic spin relaxation mechanism in molecular qubits

Philip Shushkov
{"title":"A novel non-adiabatic spin relaxation mechanism in molecular qubits","authors":"Philip Shushkov","doi":"10.1063/5.0198519","DOIUrl":null,"url":null,"abstract":"The interaction of electronic spin and molecular vibrations mediated by spin–orbit coupling governs spin relaxation in molecular qubits. We derive an extended molecular spin Hamiltonian that includes both adiabatic and non-adiabatic spin-dependent interactions, and we implement the computation of its matrix elements using state-of-the-art density functional theory. The new molecular spin Hamiltonian contains a novel spin–vibrational orbit interaction with a non-adiabatic origin, together with the traditional molecular Zeeman and zero-field splitting interactions with an adiabatic origin. The spin–vibrational orbit interaction represents a non-Abelian Berry curvature on the ground-state electronic manifold and corresponds to an effective magnetic field in the electronic spin dynamics. We further develop a spin relaxation rate model that estimates the spin relaxation time via the two-phonon Raman process. An application of the extended molecular spin Hamiltonian together with the spin relaxation rate model to Cu(II) porphyrin, a prototypical S = 1/2 molecular qubit, demonstrates that the spin relaxation time at elevated temperatures is dominated by the non-adiabatic spin–vibrational orbit interaction. The computed spin relaxation rate and its magnetic field orientation dependence are in excellent agreement with experimental measurements.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"244 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0198519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of electronic spin and molecular vibrations mediated by spin–orbit coupling governs spin relaxation in molecular qubits. We derive an extended molecular spin Hamiltonian that includes both adiabatic and non-adiabatic spin-dependent interactions, and we implement the computation of its matrix elements using state-of-the-art density functional theory. The new molecular spin Hamiltonian contains a novel spin–vibrational orbit interaction with a non-adiabatic origin, together with the traditional molecular Zeeman and zero-field splitting interactions with an adiabatic origin. The spin–vibrational orbit interaction represents a non-Abelian Berry curvature on the ground-state electronic manifold and corresponds to an effective magnetic field in the electronic spin dynamics. We further develop a spin relaxation rate model that estimates the spin relaxation time via the two-phonon Raman process. An application of the extended molecular spin Hamiltonian together with the spin relaxation rate model to Cu(II) porphyrin, a prototypical S = 1/2 molecular qubit, demonstrates that the spin relaxation time at elevated temperatures is dominated by the non-adiabatic spin–vibrational orbit interaction. The computed spin relaxation rate and its magnetic field orientation dependence are in excellent agreement with experimental measurements.
分子量子比特中的新型非绝热自旋弛豫机制
电子自旋和分子振动在自旋轨道耦合的介导下相互作用,控制着分子量子比特的自旋弛豫。我们推导出一个扩展的分子自旋哈密顿,其中包括绝热和非绝热自旋依赖性相互作用,并利用最先进的密度泛函理论实现了其矩阵元素的计算。新的分子自旋哈密顿包含一种新颖的非绝热自旋振动轨道相互作用,以及传统的绝热分子泽曼和零场分裂相互作用。自旋振动轨道相互作用代表了基态电子流形上的非阿贝尔贝里曲率,相当于电子自旋动力学中的有效磁场。我们进一步建立了一个自旋弛豫速率模型,通过双声子拉曼过程估算自旋弛豫时间。将扩展分子自旋哈密顿和自旋弛豫速率模型应用于典型的 S = 1/2 分子四比特--卟啉铜(II),结果表明高温下的自旋弛豫时间由非绝热自旋-振动轨道相互作用主导。计算得出的自旋弛豫速率及其磁场方向依赖性与实验测量结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信