Scattering and rigidity for nonlinear elastic waves

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dongbing Zha
{"title":"Scattering and rigidity for nonlinear elastic waves","authors":"Dongbing Zha","doi":"10.1007/s00526-024-02736-2","DOIUrl":null,"url":null,"abstract":"<p>For the Cauchy problem of nonlinear elastic wave equations of three-dimensional isotropic, homogeneous and hyperelastic materials satisfying the null condition, global existence of classical solutions with small initial data was proved in Agemi (Invent Math 142:225–250, 2000) and Sideris (Ann Math 151:849–874, 2000), independently. In this paper, we will consider the asymptotic behavior of global solutions. We first show that the global solution will scatter, i.e., it will converge to some solution of linear elastic wave equations as time tends to infinity, in the energy sense. We also prove the following rigidity result: if the scattering data vanish, then the global solution will also vanish identically. The variational structure of the system will play a key role in our argument.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02736-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

For the Cauchy problem of nonlinear elastic wave equations of three-dimensional isotropic, homogeneous and hyperelastic materials satisfying the null condition, global existence of classical solutions with small initial data was proved in Agemi (Invent Math 142:225–250, 2000) and Sideris (Ann Math 151:849–874, 2000), independently. In this paper, we will consider the asymptotic behavior of global solutions. We first show that the global solution will scatter, i.e., it will converge to some solution of linear elastic wave equations as time tends to infinity, in the energy sense. We also prove the following rigidity result: if the scattering data vanish, then the global solution will also vanish identically. The variational structure of the system will play a key role in our argument.

非线性弹性波的散射和刚度
对于满足空条件的三维各向同性、均质和超弹性材料的非线性弹性波方程的 Cauchy 问题,Agemi (Invent Math 142:225-250, 2000) 和 Sideris (Ann Math 151:849-874, 2000) 分别证明了小初始数据下经典解的全局存在性。在本文中,我们将考虑全局解的渐近行为。我们首先证明了全局解将会散射,即随着时间趋向无穷大,全局解将在能量意义上收敛于线性弹性波方程的某个解。我们还证明了以下刚性结果:如果散射数据消失,那么全局解也将同理消失。系统的变分结构将在我们的论证中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信