{"title":"Scattering and rigidity for nonlinear elastic waves","authors":"Dongbing Zha","doi":"10.1007/s00526-024-02736-2","DOIUrl":null,"url":null,"abstract":"<p>For the Cauchy problem of nonlinear elastic wave equations of three-dimensional isotropic, homogeneous and hyperelastic materials satisfying the null condition, global existence of classical solutions with small initial data was proved in Agemi (Invent Math 142:225–250, 2000) and Sideris (Ann Math 151:849–874, 2000), independently. In this paper, we will consider the asymptotic behavior of global solutions. We first show that the global solution will scatter, i.e., it will converge to some solution of linear elastic wave equations as time tends to infinity, in the energy sense. We also prove the following rigidity result: if the scattering data vanish, then the global solution will also vanish identically. The variational structure of the system will play a key role in our argument.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02736-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
For the Cauchy problem of nonlinear elastic wave equations of three-dimensional isotropic, homogeneous and hyperelastic materials satisfying the null condition, global existence of classical solutions with small initial data was proved in Agemi (Invent Math 142:225–250, 2000) and Sideris (Ann Math 151:849–874, 2000), independently. In this paper, we will consider the asymptotic behavior of global solutions. We first show that the global solution will scatter, i.e., it will converge to some solution of linear elastic wave equations as time tends to infinity, in the energy sense. We also prove the following rigidity result: if the scattering data vanish, then the global solution will also vanish identically. The variational structure of the system will play a key role in our argument.