Dongmin Zhao, Maohong Wei, Xiaoting Wang, Muhammad Aqeel, Jinzhi Ran, Jianming Deng
{"title":"Morpho-physiological adaptations to drought stress in nitrogen-fixing and non-nitrogen-fixing plants","authors":"Dongmin Zhao, Maohong Wei, Xiaoting Wang, Muhammad Aqeel, Jinzhi Ran, Jianming Deng","doi":"10.3389/fevo.2024.1407882","DOIUrl":null,"url":null,"abstract":"Drought profoundly affects the morpho-physiological responses of desert plants in dryland. To scrutinize the morpho-physiological responses of nitrogen (N)-fixing legumes (<jats:italic>Ammopiptanthus mongolicus</jats:italic>, <jats:italic>Caragana korshinskii</jats:italic>), N-fixing non-legumes (<jats:italic>Elaeagnus angustifolia</jats:italic>, <jats:italic>Hippophae rhamnoides</jats:italic>), and non-N-fixing plants (<jats:italic>Nitraria tangutorum</jats:italic>, <jats:italic>Haloxylon ammodendron</jats:italic>) under varied drought stress levels (75%, 50%, 25% and 5% of soil water holding capacity), a pot experiment was conducted in greenhouse. Following prolonged water deficit, carbon (C) and N stoichiometry, metabolic rates, plant growth, and biomass distribution of unstressed and stressed plants were recorded. Intensified drought significantly reduced stem, root and whole-plant biomass, with no significant changes observed in leaf dry-fresh mass ratio, specific leaf area, intrinsic water use efficiency and root to shoot ratio. However, other traits were impacted differently, reflecting distinct adaptive strategies to drought among three plant functional types (PFTs). Patterns of trait-soil water content (SWC) relationships varied across different PFTs, with N-fixing non-legumes followed by N-fixing legumes displayed greater sensitivity to SWC variations than non-N-fixing plants. This resulted in a shift from a stronger trait-SWC relationship in N-fixing non-legumes and N-fixing legumes to a less correlated relationship in non-N-fixing plants. The diverse responses to drought among PFTs suggest a shift from N limitation to water limitation as SWC decreases.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":"51 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fevo.2024.1407882","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought profoundly affects the morpho-physiological responses of desert plants in dryland. To scrutinize the morpho-physiological responses of nitrogen (N)-fixing legumes (Ammopiptanthus mongolicus, Caragana korshinskii), N-fixing non-legumes (Elaeagnus angustifolia, Hippophae rhamnoides), and non-N-fixing plants (Nitraria tangutorum, Haloxylon ammodendron) under varied drought stress levels (75%, 50%, 25% and 5% of soil water holding capacity), a pot experiment was conducted in greenhouse. Following prolonged water deficit, carbon (C) and N stoichiometry, metabolic rates, plant growth, and biomass distribution of unstressed and stressed plants were recorded. Intensified drought significantly reduced stem, root and whole-plant biomass, with no significant changes observed in leaf dry-fresh mass ratio, specific leaf area, intrinsic water use efficiency and root to shoot ratio. However, other traits were impacted differently, reflecting distinct adaptive strategies to drought among three plant functional types (PFTs). Patterns of trait-soil water content (SWC) relationships varied across different PFTs, with N-fixing non-legumes followed by N-fixing legumes displayed greater sensitivity to SWC variations than non-N-fixing plants. This resulted in a shift from a stronger trait-SWC relationship in N-fixing non-legumes and N-fixing legumes to a less correlated relationship in non-N-fixing plants. The diverse responses to drought among PFTs suggest a shift from N limitation to water limitation as SWC decreases.
期刊介绍:
Frontiers in Ecology and Evolution publishes rigorously peer-reviewed research across fundamental and applied sciences, to provide ecological and evolutionary insights into our natural and anthropogenic world, and how it should best be managed. Field Chief Editor Mark A. Elgar at the University of Melbourne is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Eminent biologist and theist Theodosius Dobzhansky’s astute observation that “Nothing in biology makes sense except in the light of evolution” has arguably even broader relevance now than when it was first penned in The American Biology Teacher in 1973. One could similarly argue that not much in evolution makes sense without recourse to ecological concepts: understanding diversity — from microbial adaptations to species assemblages — requires insights from both ecological and evolutionary disciplines. Nowadays, technological developments from other fields allow us to address unprecedented ecological and evolutionary questions of astonishing detail, impressive breadth and compelling inference.
The specialty sections of Frontiers in Ecology and Evolution will publish, under a single platform, contemporary, rigorous research, reviews, opinions, and commentaries that cover the spectrum of ecological and evolutionary inquiry, both fundamental and applied. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria. Through this unique, Frontiers platform for open-access publishing and research networking, Frontiers in Ecology and Evolution aims to provide colleagues and the broader community with ecological and evolutionary insights into our natural and anthropogenic world, and how it might best be managed.