The Hardy–Littlewood maximal operator on discrete weighted Morrey spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
X. B. Hao, B. D. Li, S. Yang
{"title":"The Hardy–Littlewood maximal operator on discrete weighted Morrey spaces","authors":"X. B. Hao,&nbsp;B. D. Li,&nbsp;S. Yang","doi":"10.1007/s10474-024-01420-3","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a discrete version of weighted Morrey spaces,\nand discuss the inclusion relations of these spaces. In addition, we obtain the\nboundedness of discrete weighted Hardy-Littlewood maximal operators on discrete\nweighted Lebesgue spaces by establishing a discrete Calderón-Zygmund decomposition\nfor weighted <span>\\(l^1\\)</span>-sequences. Furthermore, the necessary and sufficient\nconditions for the boundedness of the discrete Hardy-Littlewood maximal operators\non discrete weighted Morrey spaces are discussed. Particularly, the necessary\nand sufficient conditions are also discussed for the discrete power weights.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"172 2","pages":"445 - 469"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01420-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a discrete version of weighted Morrey spaces, and discuss the inclusion relations of these spaces. In addition, we obtain the boundedness of discrete weighted Hardy-Littlewood maximal operators on discrete weighted Lebesgue spaces by establishing a discrete Calderón-Zygmund decomposition for weighted \(l^1\)-sequences. Furthermore, the necessary and sufficient conditions for the boundedness of the discrete Hardy-Littlewood maximal operators on discrete weighted Morrey spaces are discussed. Particularly, the necessary and sufficient conditions are also discussed for the discrete power weights.

离散加权莫雷空间上的哈代-利特尔伍德最大算子
我们引入了离散版的加权莫雷空间,并讨论了这些空间的包含关系。此外,我们通过建立加权(l^1\)序列的离散卡尔德龙-齐格蒙特分解,得到了离散加权勒贝格空间上离散加权哈代-利特尔伍德最大算子的有界性。此外,还讨论了离散加权莫雷空间上离散哈代-利特尔伍德最大算子有界性的必要条件和充分条件。特别是,还讨论了离散幂权的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信