Annihilators and decompositions of singularity categories

IF 0.7 3区 数学 Q2 MATHEMATICS
Özgür Esentepe, Ryo Takahashi
{"title":"Annihilators and decompositions of singularity categories","authors":"Özgür Esentepe, Ryo Takahashi","doi":"10.1017/s001309152400018x","DOIUrl":null,"url":null,"abstract":"Given any commutative Noetherian ring <jats:italic>R</jats:italic> and an element <jats:italic>x</jats:italic> in <jats:italic>R</jats:italic>, we consider the full subcategory <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline1.png\" /> <jats:tex-math>$\\mathsf{C}(x)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of its singularity category consisting of objects for which the morphism that is given by the multiplication by <jats:italic>x</jats:italic> is zero. Our main observation is that we can establish a relation between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline2.png\" /> <jats:tex-math>$\\mathsf{C}(x), \\mathsf{C}(y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline3.png\" /> <jats:tex-math>$\\mathsf{C}(xy)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any two ring elements <jats:italic>x</jats:italic> and <jats:italic>y</jats:italic>. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"27 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001309152400018x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given any commutative Noetherian ring R and an element x in R, we consider the full subcategory $\mathsf{C}(x)$ of its singularity category consisting of objects for which the morphism that is given by the multiplication by x is zero. Our main observation is that we can establish a relation between $\mathsf{C}(x), \mathsf{C}(y)$ and $\mathsf{C}(xy)$ for any two ring elements x and y. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.
奇点范畴的湮没器和分解
给定任何交换诺特环 R 和 R 中的元素 x,我们考虑其奇异性范畴的全子范畴 $\mathsf{C}(x)$ ,这个子范畴由 x 乘以的态量为零的对象组成。我们的主要观察结果是,对于任意两个环元素 x 和 y,我们可以在 $\mathsf{C}(x), \mathsf{C}(y)$ 和 $\mathsf{C}(xy)$ 之间建立一种关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信