{"title":"Annihilators and decompositions of singularity categories","authors":"Özgür Esentepe, Ryo Takahashi","doi":"10.1017/s001309152400018x","DOIUrl":null,"url":null,"abstract":"Given any commutative Noetherian ring <jats:italic>R</jats:italic> and an element <jats:italic>x</jats:italic> in <jats:italic>R</jats:italic>, we consider the full subcategory <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline1.png\" /> <jats:tex-math>$\\mathsf{C}(x)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of its singularity category consisting of objects for which the morphism that is given by the multiplication by <jats:italic>x</jats:italic> is zero. Our main observation is that we can establish a relation between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline2.png\" /> <jats:tex-math>$\\mathsf{C}(x), \\mathsf{C}(y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" xlink:href=\"S001309152400018X_inline3.png\" /> <jats:tex-math>$\\mathsf{C}(xy)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any two ring elements <jats:italic>x</jats:italic> and <jats:italic>y</jats:italic>. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s001309152400018x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given any commutative Noetherian ring R and an element x in R, we consider the full subcategory $\mathsf{C}(x)$ of its singularity category consisting of objects for which the morphism that is given by the multiplication by x is zero. Our main observation is that we can establish a relation between $\mathsf{C}(x), \mathsf{C}(y)$ and $\mathsf{C}(xy)$ for any two ring elements x and y. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.
给定任何交换诺特环 R 和 R 中的元素 x,我们考虑其奇异性范畴的全子范畴 $\mathsf{C}(x)$ ,这个子范畴由 x 乘以的态量为零的对象组成。我们的主要观察结果是,对于任意两个环元素 x 和 y,我们可以在 $\mathsf{C}(x), \mathsf{C}(y)$ 和 $\mathsf{C}(xy)$ 之间建立一种关系。