Spyros Angelopoulos , Christoph Dürr , Shendan Jin , Shahin Kamali , Marc Renault
{"title":"Online computation with untrusted advice","authors":"Spyros Angelopoulos , Christoph Dürr , Shendan Jin , Shahin Kamali , Marc Renault","doi":"10.1016/j.jcss.2024.103545","DOIUrl":null,"url":null,"abstract":"<div><p>We study a generalization of the advice complexity model of online computation in which the advice is provided by an untrusted source. Our objective is to quantify the impact of untrusted advice so as to design and analyze online algorithms that are robust if the advice is adversarial, and efficient is the advice is foolproof. We focus on four well-studied online problems, namely ski rental, online bidding, bin packing and list update. For ski rental and online bidding, we show how to obtain algorithms that are Pareto-optimal with respect to the competitive ratios achieved, whereas for bin packing and list update, we give online algorithms with worst-case tradeoffs in their competitiveness, depending on whether the advice is trusted or adversarial. More importantly, we demonstrate how to prove lower bounds, within this model, on the tradeoff between the number of advice bits and the competitiveness of any online algorithm.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"144 ","pages":"Article 103545"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000400","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
We study a generalization of the advice complexity model of online computation in which the advice is provided by an untrusted source. Our objective is to quantify the impact of untrusted advice so as to design and analyze online algorithms that are robust if the advice is adversarial, and efficient is the advice is foolproof. We focus on four well-studied online problems, namely ski rental, online bidding, bin packing and list update. For ski rental and online bidding, we show how to obtain algorithms that are Pareto-optimal with respect to the competitive ratios achieved, whereas for bin packing and list update, we give online algorithms with worst-case tradeoffs in their competitiveness, depending on whether the advice is trusted or adversarial. More importantly, we demonstrate how to prove lower bounds, within this model, on the tradeoff between the number of advice bits and the competitiveness of any online algorithm.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.