{"title":"Bayesian joint modeling of multivariate longitudinal and survival outcomes using Gaussian copulas","authors":"Seoyoon Cho, Matthew A Psioda, Joseph G Ibrahim","doi":"10.1093/biostatistics/kxae009","DOIUrl":null,"url":null,"abstract":"There is an increasing interest in the use of joint models for the analysis of longitudinal and survival data. While random effects models have been extensively studied, these models can be hard to implement and the fixed effect regression parameters must be interpreted conditional on the random effects. Copulas provide a useful alternative framework for joint modeling. One advantage of using copulas is that practitioners can directly specify marginal models for the outcomes of interest. We develop a joint model using a Gaussian copula to characterize the association between multivariate longitudinal and survival outcomes. Rather than using an unstructured correlation matrix in the copula model to characterize dependence structure as is common, we propose a novel decomposition that allows practitioners to impose structure (e.g., auto-regressive) which provides efficiency gains in small to moderate sample sizes and reduces computational complexity. We develop a Markov chain Monte Carlo model fitting procedure for estimation. We illustrate the method’s value using a simulation study and present a real data analysis of longitudinal quality of life and disease-free survival data from an International Breast Cancer Study Group trial.","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"29 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is an increasing interest in the use of joint models for the analysis of longitudinal and survival data. While random effects models have been extensively studied, these models can be hard to implement and the fixed effect regression parameters must be interpreted conditional on the random effects. Copulas provide a useful alternative framework for joint modeling. One advantage of using copulas is that practitioners can directly specify marginal models for the outcomes of interest. We develop a joint model using a Gaussian copula to characterize the association between multivariate longitudinal and survival outcomes. Rather than using an unstructured correlation matrix in the copula model to characterize dependence structure as is common, we propose a novel decomposition that allows practitioners to impose structure (e.g., auto-regressive) which provides efficiency gains in small to moderate sample sizes and reduces computational complexity. We develop a Markov chain Monte Carlo model fitting procedure for estimation. We illustrate the method’s value using a simulation study and present a real data analysis of longitudinal quality of life and disease-free survival data from an International Breast Cancer Study Group trial.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.