Li Hongda, I. N. Konovalov, Yu. N. Panchenko, A. V. Puchikin, M. V. Andreev, S. M. Bobrovnikov
{"title":"Pulsed CO2 Laser Pumped by a Longitudinal Discharge in an Alternating Magnetic Field","authors":"Li Hongda, I. N. Konovalov, Yu. N. Panchenko, A. V. Puchikin, M. V. Andreev, S. M. Bobrovnikov","doi":"10.1134/S1024856023700136","DOIUrl":null,"url":null,"abstract":"<p>An original technique is suggested for pumping a pulsed CO<sub>2</sub> laser by a longitudinal discharge in an alternating magnetic field. A small CO<sub>2</sub> laser with active medium ∼200 mm long, pulse energy of ∼30 mJ, and efficiency of 3.4% is designed on the basis of this technique. It is revealed that the main factor which limits the generation energy of small lasers is the development of current instabilities in a longitudinal discharge over a cross section of the discharge tube. It is noted that the growth of the instabilities accelerates as the pressure of a CO<sub>2</sub> : N<sub>2</sub> : H<sub>2</sub> : He gas mixture increases to more than 0.1 atm and the specific pump power becomes higher than 3 MW/cm<sup>3</sup>. The use of an external alternating magnetic field superimposed on a pulsed longitudinal discharge makes it possible to increase the total pressure of the gas mixture in the laser to 0.4 atm when maintaining the combustion of the volume discharge.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856023700136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
An original technique is suggested for pumping a pulsed CO2 laser by a longitudinal discharge in an alternating magnetic field. A small CO2 laser with active medium ∼200 mm long, pulse energy of ∼30 mJ, and efficiency of 3.4% is designed on the basis of this technique. It is revealed that the main factor which limits the generation energy of small lasers is the development of current instabilities in a longitudinal discharge over a cross section of the discharge tube. It is noted that the growth of the instabilities accelerates as the pressure of a CO2 : N2 : H2 : He gas mixture increases to more than 0.1 atm and the specific pump power becomes higher than 3 MW/cm3. The use of an external alternating magnetic field superimposed on a pulsed longitudinal discharge makes it possible to increase the total pressure of the gas mixture in the laser to 0.4 atm when maintaining the combustion of the volume discharge.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.