Real-Time Monitoring of Multistep Batch and Flow Synthesis Processes of a Key Intermediate of Lifitegrast by a Combined Spectrometer System with Both Near-Infrared and Raman Spectroscopies Coupled to Partial Least-Squares
Quan Liu*, Chuanjun Wu, Huiting Liu, Mengfei Wang, Chuanmeng Zhao* and Fuli Zhang*,
{"title":"Real-Time Monitoring of Multistep Batch and Flow Synthesis Processes of a Key Intermediate of Lifitegrast by a Combined Spectrometer System with Both Near-Infrared and Raman Spectroscopies Coupled to Partial Least-Squares","authors":"Quan Liu*, Chuanjun Wu, Huiting Liu, Mengfei Wang, Chuanmeng Zhao* and Fuli Zhang*, ","doi":"10.1021/acsomega.4c00565","DOIUrl":null,"url":null,"abstract":"<p >Process analytical technology (PAT) has been successfully applied in numerous chemical synthesis cases and is an important tool in pharmaceutical process research and development. PAT brings new methods and opportunities for the real-time monitoring of chemical processes. In multistep synthesis, real-time monitoring of the complex reaction mixtures is a significant challenge but provides an opportunity to enhance reaction understanding and control. In this study, a combined multichannel spectrometer system with both near-infrared and Raman spectroscopy was built, and calibration models were developed to quantify the desired products, intermediates, and impurities in real-time at multiple points along the synthetic pathway. The capabilities of the system have been demonstrated by operating dynamic experiments in both batch and continuous-flow processes. It represents a significant step forward in data-driven, multistep pharmaceutical ingredient synthesis.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 18","pages":"20214–20222"},"PeriodicalIF":3.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c00565","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c00565","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Process analytical technology (PAT) has been successfully applied in numerous chemical synthesis cases and is an important tool in pharmaceutical process research and development. PAT brings new methods and opportunities for the real-time monitoring of chemical processes. In multistep synthesis, real-time monitoring of the complex reaction mixtures is a significant challenge but provides an opportunity to enhance reaction understanding and control. In this study, a combined multichannel spectrometer system with both near-infrared and Raman spectroscopy was built, and calibration models were developed to quantify the desired products, intermediates, and impurities in real-time at multiple points along the synthetic pathway. The capabilities of the system have been demonstrated by operating dynamic experiments in both batch and continuous-flow processes. It represents a significant step forward in data-driven, multistep pharmaceutical ingredient synthesis.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.