Electronic and Nonlinear Optics Investigation of Bismuthene Nanosheet as a Promising Photocatalyst

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Alireza Kokabi, Rasul Mardanian, Shoeib Babaee Touski
{"title":"Electronic and Nonlinear Optics Investigation of Bismuthene Nanosheet as a Promising Photocatalyst","authors":"Alireza Kokabi,&nbsp;Rasul Mardanian,&nbsp;Shoeib Babaee Touski","doi":"10.1134/S1063783423600358","DOIUrl":null,"url":null,"abstract":"<p>Electronic, optical, and photocatalytic characteristics of monolayer bismuthene nanosheets have been investigated as a function of their sizes. It is shown that bismuthene nanosheet photocatalytic characteristics are comparable with the currently available high-ranked photocatalysts. The mentioned characteristics are enhanced by the extension of nanosheet along both edges. The nonlinear optics (NLO) analysis for a variety of nanosheet sizes displays a wide range of absorption on the solar spectrum. This would be another fascinating characteristic of water-splitting. The stability of the bismuthene nanosheet falls by widening the nanosheet from both sides of armchair and zigzag edges. The dependency of the energy gap of HOMO and LUMO levels regarding the nanosheet size along either of armchair and zigzag boundaries has been investigated up to 388 atoms. Regions of chemical activity in bismuthene are mainly focused in the middle of nanosheets. This means that either of armchair and zigzag edges in bismuthene nanosheet demonstrate a negligible chemically activity.</p>","PeriodicalId":731,"journal":{"name":"Physics of the Solid State","volume":"65 7-12","pages":"156 - 165"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Solid State","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063783423600358","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic, optical, and photocatalytic characteristics of monolayer bismuthene nanosheets have been investigated as a function of their sizes. It is shown that bismuthene nanosheet photocatalytic characteristics are comparable with the currently available high-ranked photocatalysts. The mentioned characteristics are enhanced by the extension of nanosheet along both edges. The nonlinear optics (NLO) analysis for a variety of nanosheet sizes displays a wide range of absorption on the solar spectrum. This would be another fascinating characteristic of water-splitting. The stability of the bismuthene nanosheet falls by widening the nanosheet from both sides of armchair and zigzag edges. The dependency of the energy gap of HOMO and LUMO levels regarding the nanosheet size along either of armchair and zigzag boundaries has been investigated up to 388 atoms. Regions of chemical activity in bismuthene are mainly focused in the middle of nanosheets. This means that either of armchair and zigzag edges in bismuthene nanosheet demonstrate a negligible chemically activity.

Abstract Image

Abstract Image

铋钌纳米片作为一种前景看好的光催化剂的电子学和非线性光学研究
摘要 研究了单层双钌纳米片的电子、光学和光催化特性与其尺寸的函数关系。研究表明,双钌纳米片的光催化特性可与现有的高级光催化剂相媲美。纳米片的两边延伸增强了上述特性。对各种尺寸的纳米片进行的非线性光学(NLO)分析表明,纳米片在太阳光谱中的吸收范围很广。这将是分水效应的另一个迷人特征。从 "扶手椅 "边和 "之 "字边两侧扩大纳米片,双钌纳米片的稳定性就会下降。我们研究了 HOMO 和 LUMO 电平的能隙与沿扶手椅边和之字形边的纳米片尺寸的关系,最大可达 388 个原子。双钌的化学活性区域主要集中在纳米片的中间。这意味着双钌纳米片的扶手边和之字边的化学活性微乎其微。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Solid State
Physics of the Solid State 物理-物理:凝聚态物理
CiteScore
1.70
自引率
0.00%
发文量
60
审稿时长
2-4 weeks
期刊介绍: Presents the latest results from Russia’s leading researchers in condensed matter physics at the Russian Academy of Sciences and other prestigious institutions. Covers all areas of solid state physics including solid state optics, solid state acoustics, electronic and vibrational spectra, phase transitions, ferroelectricity, magnetism, and superconductivity. Also presents review papers on the most important problems in solid state physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信