{"title":"Stability estimates for an inverse boundary value problem for biharmonic operators with first order perturbation from partial data","authors":"Boya Liu","doi":"10.1088/1361-6420/ad3be6","DOIUrl":null,"url":null,"abstract":"In this paper we study an inverse boundary value problem for the biharmonic operator with first order perturbation. Our geometric setting is that of a bounded simply connected domain in the Euclidean space of dimension three or higher. Assuming that the inaccessible portion of the boundary is flat, and we have knowledge of the Dirichlet-to-Neumann map on the complement, we prove logarithmic type stability estimates for both the first and the zeroth order perturbation of the biharmonic operator.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"14 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad3be6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study an inverse boundary value problem for the biharmonic operator with first order perturbation. Our geometric setting is that of a bounded simply connected domain in the Euclidean space of dimension three or higher. Assuming that the inaccessible portion of the boundary is flat, and we have knowledge of the Dirichlet-to-Neumann map on the complement, we prove logarithmic type stability estimates for both the first and the zeroth order perturbation of the biharmonic operator.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.