Variable-valence element doping mediated photogenerated electron trapping for selective oxidation reactions†

EES catalysis Pub Date : 2024-04-24 DOI:10.1039/D4EY00024B
Xia Zhong, Yan Zhao, Lei Li, Xin He, Hui Wang, Xiaodong Zhang and Yi Xie
{"title":"Variable-valence element doping mediated photogenerated electron trapping for selective oxidation reactions†","authors":"Xia Zhong, Yan Zhao, Lei Li, Xin He, Hui Wang, Xiaodong Zhang and Yi Xie","doi":"10.1039/D4EY00024B","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic selective oxidation provides a green and mild way of producing high-value added chemicals, whose conversion and selectivity are limited by complex oxidation pathways mediated by various reactive radical species. Thus, using photogenerated holes as an oxidant to directly drive these oxidation reactions could overcome the above problems, whereas the simultaneously formed electrons would cause the quenching of holes or the formation of other unfavorable reactive oxygen species that would affect the reaction efficiency. Herein, a variable-valence element doping method was proposed to realize hole-mediated photocatalytic selective oxidation. By taking Cu-doped Bi<small><sub>2</sub></small>WO<small><sub>6</sub></small> as a typical prototype, we show that the doped Cu element with monovalent and divalent character can effectively trap photogenerated electrons, thereby boosting hole accumulation for selective oxidation reactions. As expected, Cu-doped Bi<small><sub>2</sub></small>WO<small><sub>6</sub></small> exhibited excellent catalytic performances in oxidative coupling of benzylamines. This study provides a perspective on optimizing selective oxidation by hole regulation.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 4","pages":" 980-986"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00024b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00024b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic selective oxidation provides a green and mild way of producing high-value added chemicals, whose conversion and selectivity are limited by complex oxidation pathways mediated by various reactive radical species. Thus, using photogenerated holes as an oxidant to directly drive these oxidation reactions could overcome the above problems, whereas the simultaneously formed electrons would cause the quenching of holes or the formation of other unfavorable reactive oxygen species that would affect the reaction efficiency. Herein, a variable-valence element doping method was proposed to realize hole-mediated photocatalytic selective oxidation. By taking Cu-doped Bi2WO6 as a typical prototype, we show that the doped Cu element with monovalent and divalent character can effectively trap photogenerated electrons, thereby boosting hole accumulation for selective oxidation reactions. As expected, Cu-doped Bi2WO6 exhibited excellent catalytic performances in oxidative coupling of benzylamines. This study provides a perspective on optimizing selective oxidation by hole regulation.

Abstract Image

可变价元素掺杂介导的光生电子捕获用于选择性氧化反应
光催化选择性氧化为生产高附加值化学品提供了一种绿色、温和的方法,而这些化学品的转化率和选择性受到各种活性自由基介导的复杂氧化途径的限制。因此,使用光生空穴作为氧化剂直接驱动这些氧化反应可以克服上述问题,而同时形成的电子会导致空穴淬灭或形成其他不利的活性氧物种,从而影响反应效率。在此,我们提出了一种可变价元素掺杂法来实现空穴介导的光催化选择性氧化。以掺铜的 Bi2WO6 为典型原型,我们发现掺杂一价和二价的铜元素能有效捕获光生电子,从而促进空穴积累,实现选择性氧化反应。正如预期的那样,掺杂铜元素的 Bi2WO6 在苄胺的氧化偶联反应中表现出优异的催化性能。这项研究为通过空穴调节优化选择性氧化提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信