On power series subspaces of certain nuclear Fréchet spaces

IF 0.8 Q2 MATHEMATICS
Nazlı Doğan
{"title":"On power series subspaces of certain nuclear Fréchet spaces","authors":"Nazlı Doğan","doi":"10.1007/s43036-024-00335-8","DOIUrl":null,"url":null,"abstract":"<div><p>The diametral dimension, <span>\\(\\Delta (E),\\)</span> and the approximate diametral dimension, <span>\\(\\delta (E)\\)</span> of an element <i>E</i> of a class of nuclear Fréchet spaces, which satisfies <span>\\((\\underline{DN})\\)</span> and <span>\\(\\Omega \\)</span> are set theoretically between the respective invariant of power series spaces <span>\\(\\Lambda _{1}(\\varepsilon )\\)</span> and <span>\\(\\Lambda _{\\infty }(\\varepsilon )\\)</span> for some exponent sequence <span>\\(\\varepsilon .\\)</span> Aytuna et al. (Manuscr Math 67:125–142, 1990) proved that <i>E</i> contains a complemented subspace which is isomorphic to <span>\\(\\Lambda _{\\infty }(\\varepsilon )\\)</span> provided <span>\\(\\Delta (E)= \\Lambda _{\\infty }^{\\prime }(\\varepsilon ))\\)</span> and <span>\\(\\varepsilon \\)</span> is stable. In this article, we consider the other extreme case and we prove that, there exist nuclear Fréchet spaces with the properties <span>\\((\\underline{DN})\\)</span> and <span>\\(\\Omega ,\\)</span> even regular nuclear Köthe spaces, satisfying <span>\\(\\Delta (E)=\\Lambda _{1}(\\varepsilon )\\)</span> such that there is no subspace of <i>E</i> which is isomorphic to <span>\\(\\Lambda _{1}(\\varepsilon ).\\)</span></p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"9 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00335-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The diametral dimension, \(\Delta (E),\) and the approximate diametral dimension, \(\delta (E)\) of an element E of a class of nuclear Fréchet spaces, which satisfies \((\underline{DN})\) and \(\Omega \) are set theoretically between the respective invariant of power series spaces \(\Lambda _{1}(\varepsilon )\) and \(\Lambda _{\infty }(\varepsilon )\) for some exponent sequence \(\varepsilon .\) Aytuna et al. (Manuscr Math 67:125–142, 1990) proved that E contains a complemented subspace which is isomorphic to \(\Lambda _{\infty }(\varepsilon )\) provided \(\Delta (E)= \Lambda _{\infty }^{\prime }(\varepsilon ))\) and \(\varepsilon \) is stable. In this article, we consider the other extreme case and we prove that, there exist nuclear Fréchet spaces with the properties \((\underline{DN})\) and \(\Omega ,\) even regular nuclear Köthe spaces, satisfying \(\Delta (E)=\Lambda _{1}(\varepsilon )\) such that there is no subspace of E which is isomorphic to \(\Lambda _{1}(\varepsilon ).\)

论某些核弗雷谢特空间的幂级数子空间
一类核弗雷谢特空间的元素 E 的直径维度((\delta (E),\)和近似直径维度(\(\delta (E)\)、满足\((underline{DN})\)和\(\Omega\)的幂级数空间的不变量在理论上被设定在对于某个指数序列\(\varepsilon .\)的幂级数空间的不变量\(\Lambda _{1}(\varepsilon )\)和\(\Lambda _{infty }(\varepsilon )\)之间。\Aytuna 等人(Manuscr Math 67:125-142,1990)证明了只要 \(\Delta (E)= \Lambda _{\infty }^{\prime }(\varepsilon ))\) 并且 \(\varepsilon \) 是稳定的,那么 E 包含一个与 \(\Lambda _{\infty }(\varepsilon )\) 同构的补码子空间。在本文中,我们考虑了另一种极端情况,并证明存在核弗雷谢特空间,其性质是 \((\underline{DN})\) 和 \(\Omega 、\甚至是规则的核柯瑟空间,满足((\Delta (E)=\Lambda _{1}(\varepsilon )\) such that there is no subspace of E which is isomorphic to \(\Lambda _{1}(\varepsilon ).\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信