{"title":"Indigenous lands and conservation units slow down non-GHG climate change in the Cerrado-Amazon ecotone","authors":"Hellen Kezia Almada , Marcia Nunes Macedo , Eddie Lenza , Leandro Maracahipes , Divino Vicente Silvério","doi":"10.1016/j.pecon.2024.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Preserving tropical forests by avoiding deforestation and forest degradation is essential for maintaining ecosystem services. Brazilian Conservation Units (CUs) and Indigenous Lands (ILs) have effectively prevented deforestation and supported climate regulation. However, these protected areas face increasing threats from forest fires and droughts across the Amazon and Cerrado biomes. This study assesses how disturbances affect climate regulating factors (surface temperature (LST), evapotranspiration (ET), and albedo) in Mato Grosso state, among different land uses (CUs, ILs, and multiple-use areas - MUs). To do so, we analyzed satellite data collected between 2001 and 2020. Results showed that MUs (outside protected areas) had lower ET (∼10%), higher daytime LST (∼1.5 °C), and higher albedo (∼10%) than CUs and ILs in both biomes in 2001. Over the study period, MUs experienced a greater increase in LST (Amazon: ∼1.4 °C; Cerrado: ∼1.1 °C) and albedo (Amazon: ∼6%; Cerrado: ∼3%) compared to protected areas, regardless of the biome. In contrast, ILs and CUs showed smaller mean changes in LST (∼0.2 °C), ET (∼1.3%), and albedo (∼1.3%). These changes were associated with native vegetation loss, forest fires, and water stress. Our results highlight the important role of protected areas in maintaining climate stability, with higher ET, lower LST, and lower albedo than other land uses. However, the long-term preservation of these services within protected areas depends on interventions in surrounding regions, particularly in the Amazon. Protecting and restoring these natural ecosystems is key for safeguarding ecosystem services and climate regulation in tropical regions.</p></div>","PeriodicalId":56034,"journal":{"name":"Perspectives in Ecology and Conservation","volume":"22 2","pages":"Pages 177-185"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2530064424000191/pdfft?md5=836caadf5abb3cecc263b709845b6d48&pid=1-s2.0-S2530064424000191-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspectives in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2530064424000191","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Preserving tropical forests by avoiding deforestation and forest degradation is essential for maintaining ecosystem services. Brazilian Conservation Units (CUs) and Indigenous Lands (ILs) have effectively prevented deforestation and supported climate regulation. However, these protected areas face increasing threats from forest fires and droughts across the Amazon and Cerrado biomes. This study assesses how disturbances affect climate regulating factors (surface temperature (LST), evapotranspiration (ET), and albedo) in Mato Grosso state, among different land uses (CUs, ILs, and multiple-use areas - MUs). To do so, we analyzed satellite data collected between 2001 and 2020. Results showed that MUs (outside protected areas) had lower ET (∼10%), higher daytime LST (∼1.5 °C), and higher albedo (∼10%) than CUs and ILs in both biomes in 2001. Over the study period, MUs experienced a greater increase in LST (Amazon: ∼1.4 °C; Cerrado: ∼1.1 °C) and albedo (Amazon: ∼6%; Cerrado: ∼3%) compared to protected areas, regardless of the biome. In contrast, ILs and CUs showed smaller mean changes in LST (∼0.2 °C), ET (∼1.3%), and albedo (∼1.3%). These changes were associated with native vegetation loss, forest fires, and water stress. Our results highlight the important role of protected areas in maintaining climate stability, with higher ET, lower LST, and lower albedo than other land uses. However, the long-term preservation of these services within protected areas depends on interventions in surrounding regions, particularly in the Amazon. Protecting and restoring these natural ecosystems is key for safeguarding ecosystem services and climate regulation in tropical regions.
期刊介绍:
Perspectives in Ecology and Conservation (PECON) is a scientific journal devoted to improving theoretical and conceptual aspects of conservation science. It has the main purpose of communicating new research and advances to different actors of society, including researchers, conservationists, practitioners, and policymakers. Perspectives in Ecology and Conservation publishes original papers on biodiversity conservation and restoration, on the main drivers affecting native ecosystems, and on nature’s benefits to people and human wellbeing. This scope includes studies on biodiversity patterns, the effects of habitat loss, fragmentation, biological invasion and climate change on biodiversity, conservation genetics, spatial conservation planning, ecosystem management, ecosystem services, sustainability and resilience of socio-ecological systems, conservation policy, among others.