Martina Gyimesi , Lotta E. Oikari , Chieh Yu , Heidi G. Sutherland , Dale R. Nyholt , Lyn R. Griffiths , Andre J. Van Wijnen , Rachel K. Okolicsanyi , Larisa M. Haupt
{"title":"CpG methylation changes in human mesenchymal and neural stem cells in response to in vitro niche modifications","authors":"Martina Gyimesi , Lotta E. Oikari , Chieh Yu , Heidi G. Sutherland , Dale R. Nyholt , Lyn R. Griffiths , Andre J. Van Wijnen , Rachel K. Okolicsanyi , Larisa M. Haupt","doi":"10.1016/j.biochi.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>Stem cell therapies hold promise in addressing the burden of neurodegenerative diseases with human embryonic neural stem cells (hNSC-H9s) and bone marrow-derived human mesenchymal stem cells (hMSCs) as viable candidates. The induction of hMSC neurospheres (hMSC-IN) generate a more lineage-restricted common neural progenitor-like cell population, potentially tunable by heparan sulfate proteoglycans (HSPGs). We examined CpG (5 mC) site methylation patterns using Illumina Infinium 850 K EPIC arrays in hNSC-H9, hMSCs and hMSC-IN cultures with HSPG agonist heparin at early and late phases of growth. We identified key regulatory CpG sites in syndecans (<em>SDC2; SDC4</em>) that potentially regulate gene expression in monolayers. Unique hMSC-IN hypomethylation in glypicans (<em>GPC3</em>; <em>GPC4)</em> underscore their significance in neural lineages with Sulfatase 1 and 2 (<em>SULF1</em> & <em>2</em>) CpG methylation changes potentially driving the neurogenic shift. hMSC-INs methylation levels at <em>SULF1</em> CpG sites and <em>SULF2</em>:cg25401628 were more closely aligned with hNSC-H9 cells than with hMSCs. We further suggest <em>SOX2</em> regulation governed by lncSOX2-Overall Transcript <em>(lncSOX2-OT)</em> methylation changes with preferential activation of <em>ENO2</em> over other neuronal markers within hMSC-INs. Our findings illuminate epigenetic dynamics governing neural lineage commitment of hMSC-INs offering insights for targeted mechanisms for regenerative medicine and therapeutic strategies.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300908424000828/pdfft?md5=1d288c983293875ff2a9342fcffc1843&pid=1-s2.0-S0300908424000828-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424000828","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Stem cell therapies hold promise in addressing the burden of neurodegenerative diseases with human embryonic neural stem cells (hNSC-H9s) and bone marrow-derived human mesenchymal stem cells (hMSCs) as viable candidates. The induction of hMSC neurospheres (hMSC-IN) generate a more lineage-restricted common neural progenitor-like cell population, potentially tunable by heparan sulfate proteoglycans (HSPGs). We examined CpG (5 mC) site methylation patterns using Illumina Infinium 850 K EPIC arrays in hNSC-H9, hMSCs and hMSC-IN cultures with HSPG agonist heparin at early and late phases of growth. We identified key regulatory CpG sites in syndecans (SDC2; SDC4) that potentially regulate gene expression in monolayers. Unique hMSC-IN hypomethylation in glypicans (GPC3; GPC4) underscore their significance in neural lineages with Sulfatase 1 and 2 (SULF1 & 2) CpG methylation changes potentially driving the neurogenic shift. hMSC-INs methylation levels at SULF1 CpG sites and SULF2:cg25401628 were more closely aligned with hNSC-H9 cells than with hMSCs. We further suggest SOX2 regulation governed by lncSOX2-Overall Transcript (lncSOX2-OT) methylation changes with preferential activation of ENO2 over other neuronal markers within hMSC-INs. Our findings illuminate epigenetic dynamics governing neural lineage commitment of hMSC-INs offering insights for targeted mechanisms for regenerative medicine and therapeutic strategies.